
Overview

The SSC provides a powerful programming language that allows users to
customize the controller for their particular application. Programs can be
downloaded into the SSC memory freeing the host computer for other tasks.
However, the host computer can send commands to the controller at any
time, even while a program is being executed.

In addition to standard motion commands, the SSC provides commands
that allow the SSC to make its own decisions. These commands include
jumps, repeat loops, and subroutines.

For greater programming flexibility, the SSC provides user-defined variables,
arrays and arithmetic functions. For example, with a cut-to-length operation,
the length can be specified as a variable in a program which the operator
can change as necessary.

The following sections in this chapter discuss aspects of creating
applications programs.

Example Applications

WIRE CUTTER
An operator activates a start switch. This causes an actuator/motor to
advance the wire a distance of 10". When the motion stops, the controller
generates an output signal which activates the cutter. Allow 100 ms for the
cutting cycle to complete.

Suppose that the actuator has a 2 turn per inch screw. Also assume that the
encoder resolution is 1000 lines per revolution. One inch of travel equals:

(2 rev/inch) * (1000 counts/rev) = 2000 counts/inch

To set up, use Controller Setup. Set the scaling for 2000 pulses per unit and
the user unit to inches.

The input signal may be applied to input 1, for example, and the output
signal is chosen as output 1. The motor velocity profile and the related input
and output signals are shown in Fig. 6.1.

6-1

Sample Applications 6

The program starts at a state that we define as START. Here the controller
waits for the input pulse on Input1. As soon as the pulse is given, the
controller starts the forward motion.

Upon completion of the forward move, the controller outputs a pulse for
20 ms and then waits an additional 80 ms before returning to START for a
new cycle.

INSTRUCTION INTERPRETATION
#Insert label #START. Program Flow. Label
Wait for Input #1 to go LOW Program Flow. Wait for Condition
Single Axis Move

Axis X, incremental 10 in., etc. Motion. Single Axis Move Set
up for 10 inch move @ speed of 5
in/sec., accel of 10 in/sec.2

Wait for x axis to complete motion Program Flow. Wait for Condition
Set Output #1 On I/O. Output
Wait 20 ms Program Flow. Wait
Set Output #1 Off I/O. Output
Wait 80 ms Program Flow. Wait
Jump to START Program Flow. Jump

Figure 6.1 - Motor Velocity and the Associated input/output signals

START PULSE I1

MOTOR VELOCITY

OUTPUT PULSE

TIME INTERVALS

move

output

wait ready move

6-2

6 : S A M P L E A P P L I C A T I O N S

EXAMPLE APPLICATIONS

X-Y TABLE CONTROLLER
An X-Y-Z system must cut the pattern shown in Fig. 6.2. The X-Y table moves
the plate while the Z-axis raises and lowers the cutting tool.

Cutting must be performed at one inch per second. Non-cutting moves
should be performed at 5 inches per second. The acceleration rate is 0.1 g.

The motion starts at point A, with the Z-axis raised. An X-Y motion to point
B is followed by lowering the Z-axis and performing a cut along the circle.
Once the circular motion is completed, the Z-axis is raised and the motion
continues to point C, etc.

Assume that all of the 3 axes are driven by lead screws with 10 turns-per-
inch pitch. Also assume encoder resolution of 1000 lines per revolution or
4,000 counts per revolution in quadrature. This results in the relationship:

1 inch = 40,000 counts
an acceleration rate of 0.1g equals

0.1g = 38.6 in/s2

Note that the circular path has a radius of 2", and the motion starts at the
angle of 270˚ and traverses 360˚ in the CW (negative direction). Such a path
is specified with the Motion. 2D Circular interpolation instruction.

Further assume that the Z must move 2" at a linear speed of 2" per second.
The required motion is performed by the following instructions:

INSTRUCTION INTERPRETATION
#Insert Label START Program Flow.....Label
#XY Linear Interpolation, Motion.....Linear Interpolation

Incremental Axis X 4 in, Axis Y 4 in,
speed 5 in/s, accel 38.6 in/s2

#Single Axis Move Motion.....Single Axis Move
Axis Z, -2 in., speed 2in/s, accel

38.6 in/s2
Wait for z-axis motion complete Program Flow.....Wait for Condition
#XY Circular Motion, Clockwise Motion 2D Circular Motion

Radius 2in., Start 270, Sweep 360,
Speed 1in/s, accel 38.6 in/s2

#Wait for y axis motion complete Program Flow.....Wait for Condition

6-3

S A M P L E A P P L I C A T I O N S : 6

INSTRUCTION INTERPRETATION
#Single Axis Move, Incremental Motion.....Single Axis Move

Axis Z 2 in, Speed 2 in/s, accel
38.6 in/s2
Axis X 2 in, Speed 5.3 in/s, accel
38.6 in/s2

Single Axis Move Motion.....Single Axis Move
Axis Z, -2., speed 2 in/s, accel
38.6 in/s2

wait for z-axis motion complete Program Flow..... Wait fro Condition
#XY Circular Motion, Clockwise Motion.....2D Circular Motion

Radius 2 in., Start 270, Sweep 360,
speed 1 in/s, accel 38.6 in/s2

Wait for y axis motion complete Program Flow.....Wait for Condition
#Single Axis Move

Axis Z, -2 in., speed 2 in/s, accel
38.6 in/s2
#Wait for z-axis motion complete Program Flow.....Wait for Condition
#XY Linear Interpolation Motion.....Linear Interpolation

Axis X -9.3 in., Axis Y -4 in., speed
5 in/s,
accel 38.6 in/s2

#Jump to START Program Flow.....Jump

Figure 6.2 - Motor Velocity and the Associated input/output signals

6-4

6 : S A M P L E A P P L I C A T I O N S

EXAMPLE APPLICATIONS

Introduction

The SSC provides over 100 two-letter commands for specifying motion and
machine parameters. Commands are included to initiate action, interrogate
status and configure the digital filter.

The SSC two-letter instruction set is BASIC-like. Instructions consist of two
uppercase letters that correspond phonetically with the appropriate
function. For example, the instruction BG begins motion, and ST stops the
motion.

Commands can be sent “live” over the serial port for immediate execution
by the SSC, or an entire group of commands can be downloaded into the
SSC memory for execution at a later time. Combining commands into
groups for later execution is referred to as Applications Programming and is
discussed in the following chapter 9.

This section describes the SSC instruction set and syntax. A summary of
commands as well as a complete listing of all SSC instructions is included in
the two-letter Command Reference chapter.

Command Syntax

SSC instructions are represented by two ASCII upper case characters
followed by applicable arguments. A space may be inserted between the
instruction and arguments. A semicolon or <enter> is used to terminate the
instruction for processing by the SSC command interpreter. Note: If you are
using a Tol-O-Motion’s SSC terminal window, commands will not be
processed until an <enter> command is given. This allows the user to
separate many commands on a single line and not begin execution until the
user gives the <enter> command.

For example, the command

INSTRUCTION INTERPRETATION
PR 4000 <enter> Position relative

PR is the two character instruction for position relative. 4000 is the
argument which represents the required position value in counts. The

IMPORTANT: All SSC commands must be sent in upper case.

7-1

Two-Letter Command Syntax 7

<enter> terminates the instruction. The space between PR and 4000 is
optional.

For specifying data for the X,Y,Z and W axes, commas are used to separate
the axes. If no data is specified for an axis, a comma is still needed as shown
in the examples below. If no data is specified for an axis, the previous value
is maintained. The space between the data and instruction is optional.

INSTRUCTION INTERPRETATION
PR 500, 725, 300, 1000 Specify position relative 500 counts on X, 725 counts on Y,

300 counts on Z and 1000 counts on W

The SSC provides an alternative method for specifying data. Here data is
specified individually using a single axis specifier such as X,Y,Z or W. An
equals sign is used to assign data to that axis. For example:

INSTRUCTION INTERPRETATION
PRX=1000 Specify a position relative movement for the X axis of 1000
ACY=200000 Specify acceleration for the Y axis as 200000

Instead of data, some commands request action to occur on an axis or
group of axes. For example, ST XY stops motion on both the X and Y axes.
Commas are not required in this case since the particular axis is specified by
the appropriate letter X Y Z or W. If no parameters follow the instruction,
action will take place on all axes. Here are some examples of syntax for
requesting action:

INSTRUCTION INTERPRETATION
BG X Begin X only
BG Y Begin Y only
BG XYZW Begin all axes
BG YW Begin Y and W only
BG Begin all axes

COORDINATED MOTION WITH MORE THAN 1 AXIS
When requesting action for coordinated motion, the letter S is used to
specify the coordinated motion. For example:

INSTRUCTION INTERPRETATION
BG S Begin coordinated sequence
BG SW Begin coordinated sequence and W axis

7-2

7 : T W O - L E T T E R C O M M A N D S Y N T A X

COMMAND SYNTAX

PROGRAM SYNTAX
Chapter 8 explains how to write and execute motion control programs in 2-
letter command format.

Controller Response to DATA

The SSC returns a : for valid commands.
The SSC returns a ? for invalid commands.
For example, if the command BG is sent in lower case, the SSC will return a ?.

INSTRUCTION INTERPRETATION
:bg <enter> invalid command, lower case
? SSC returns a ?

When the controller receives an invalid command the user can request the
error code. The error code will specify the reason for the invalid command
response. To request the error code type the command: TC1 For example:

INSTRUCTION INTERPRETATION
?TC1 <enter> Tell Code command
1 Unrecognized command Returned response

There are many reasons for receiving an invalid command response. The
most common reasons are: unrecognized command (such as typographical
entry or lower case), command given at improper time (such as during
motion), or a command out of range (such as exceeding maximum speed).
A complete list of all error codes can be found with the description of the
TC command in the Command Reference, Chapter 12.

Interrogating the Controller

INTERROGATION COMMANDS
The SSC has a set of commands that directly interrogate the controller.
When the command is entered, the requested data is returned in decimal
format on the next line followed by a carriage return and line feed. The
format of the returned data can be changed using the Position Format (PF),
Variable Format (VF) and Leading Zeros (LZ) command. See Chapter 12 for
the two-letter Command Reference.

7-3

T W O - L E T T E R C O M M A N D S Y N T A X : 7

Summary of Interrogation Commands

For example, the following example illustrates how to display the current
position of the X axis:

INSTRUCTION INTERPRETATION
TP X <enter> Tell position X
0000000000 Controllers Response
TP XY <enter> Tell position X and Y
0000000000,0000000000 Controllers Response

ADDITIONAL INTERROGATION METHODS.
Most commands can be interrogated by using a question mark. For
information specific to a particular axis, type the command followed by a ?
for each axis requested.

INSTRUCTION INTERPRETATION
PR 1000 Specify X only as 1000
PR ,2000 Specify Y only as 2000
PR ,,3000 Specify Z only as 3000
PR ,,,4000 Specify W only as 4000
PR 2000,4000,6000,8000 Specify X Y Z and W
PR ,8000,,9000 Specify Y and W only
PR ?,?,?,? Request X,Y,Z,W values
PR ,? Request Y value only

The controller can also be interrogated with operands.

RP

RL

^R ^V

SC

TB

TC

TD

TE

TI

TP

TR

TS

TT

TV

Report Command Position

Report Latch

Firmware Revision Information

Stop Code

Tell Status

Tell Error Code

Tell Dual Encoder

Tell Error

Tell Input

Tell Position

Trace

Tell Switches

Tell Torque

Tell Velocity

7-4

7 : T W O - L E T T E R C O M M A N D S Y N T A X

INTERROGATING
THE CONTROLLER

Most SSC commands have corresponding operands that can be used for
interrogation. Operands must be used inside of valid SSC expressions.
For example, to display the value of an operand, the user could use the
command:

INSTRUCTION INTERPRETATION
MG ‘operand’ where ‘operand’ is a valid SSC operand

All of the command operands begin with the underscore character (_). For
example, the value of the current position on the X axis can be assigned to
the variable, V, with the command:

INSTRUCTION
V=_TPX

The Command Reference denotes all commands which have an equivalent
operand as “Used as an Operand”. For further information, see description
of operands in Chapter 8.

Command Summary

For a complete command summary, see Chapter 12, Command Reference
and the two-letter Command Summary in the Appendix.

7-5

T W O - L E T T E R C O M M A N D S Y N T A X : 7

Notes:

7-6

7 : T W O - L E T T E R C O M M A N D S Y N T A X

Overview

The SSC can be commanded to do the following modes of motion: Absolute
and relative independent positioning, jogging, linear interpolation (up to
4 axes), linear and circular interpolation (2 axes with 3rd axis of tangent
motion), electronic gearing, electronic cam motion and contouring. These
modes are discussed in the following sections.

The SSC1 is a single axis controller and uses X-axis motion only. Likewise,
the SSC2 uses X and Y, the SSC3 uses X,Y and Z, and the SSC4 uses X,Y,Z
and W.

Independent Axis Positioning

In this mode, motion between the specified axes is independent, and each
axis follows its own profile. The user specifies the desired absolute position
(PA) or relative position (PR), slew speed (SP), acceleration ramp (AC), and
deceleration ramp (DC), for each axis. On begin (BG), the SSC profiler
generates the corresponding trapezoidal or triangular velocity profile and
position trajectory. The controller determines a new command position
along the trajectory every sample period until the specified profile is
complete. Motion is complete when the last position command is sent by
the SSC profiler. Note: The actual motor motion may not be complete when
the profile has been completed, however, the next motion command may
be specified.

The Begin (BG) command can be issued for all axes either simultaneously
or independently. XYZ or W axis specifiers are required to select the axes for
motion. When no axes are specified, this causes motion to begin on all axes.

The speed (SP) and the acceleration (AC) can be changed at any time during
motion, however, the deceleration (DC) and position (PR or PA) cannot be
changed until motion is complete. Remember, motion is complete when
the profiler is finished, not when the actual motor is in position. The Stop
command (ST) can be issued at any time to decelerate the motor to a stop
before it reaches its final position.

8-1

Programming Motion
With Two-Letter Command Syntax 8

An incremental position movement (IP) may be specified during motion as
long as the additional move is in the same direction. Here, the user specifies
the desired position increment, n. The new target is equal to the old target
plus the increment, n. Upon receiving the IP command, a revised profile will
be generated for motion towards the new end position. The IP command
does not require a begin. Note: If the motor is not moving, the IP command
is equivalent to the PR and BG command combination.

COMMAND SUMMARY - INDEPENDENT AXIS

The lower case specifiers (x,y,z,w) represent position values for each axis.

OPERAND SUMMARY - INDEPENDENT AXIS

_ACx

_DCx

_SPx

_PAx

_PRx

Return acceleration rate for tha axis specified by 'x'

Return deceleration rate for the axis specified by 'x'

Return speed for the axis specified by 'x'

Return current destination if 'x' axis is moving, otherwise

returns tthe current command postion if in a move

Returns the current incremental distance specified for the 'x' axis

OPPERAND DESCRIPTION

PR X, Y, Z, W

PA x, y, z, w

SP x, y, z, w

AC x, y, z, w

DC x, y, z, w

BG X, Y, Z, W

ST XYZW

IP x, y, z, w

IT x, y, z, w

AM XYZW

MC XYZW

Specifies relative distance

Specifies absolute position

Specifies slew speed

Specifies acceleration rate

Specifies deceleration rate

Starts motion

Stops before end of move

Changes target position

Time constant for independent motion smoothing

Trippoint for profiler complete

Trippoint for "in position"

COMMAND DESCRIPTION

8-2

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

INDEPENDENT AXIS
POSITIONING

INDEPENDENT POSITIONING EXAMPLES

Absolute Position Movement

INSTRUCTION INTERPRETATION
PA 10000,20000 Specify absolute X,Y position
AC 1000000,1000000 Acceleration for X,Y
DC 1000000,1000000 Deceleration for X,Y
SP 50000,30000 Speeds for X,Y
BG XY Begin motion

Multiple Move Sequence

REQUIRED MOTION PROFILES:
INSTRUCTION INTERPRETATION
X-Axis Position 1000 counts
20000 count/sec Speed
500000 counts/sec2 Acceleration
Y-Axis Position 300 counts
10000 count/sec Speed
500000 counts/sec2 Acceleration
Z-Axis Position 25 counts
2500 counts/sec Speed
500000 counts/sec Acceleration

This example will specify a relative position movement on X, Y and Z axes.
The movement on each axis will be separated by 20 msec. Fig. 8.1 shows the
velocity profiles for the X,Y and Z axis.

INSTRUCTION INTERPRETATION
#A BEGIN PROGRAM
PR 1000,300,25 Specify relative position movement of

1000, 300 and 25 counts for X,Y and Z axes.
SP 20000,10000,2500 Specify speed of 20000, 10000, and 2500 counts / sec
AC 500000,500000,500000 Specify acceleration of 500000 counts / sec2 for all axes
DC 500000,500000,500000 Specify deceleration of 500000 counts / sec2 for all axes
BG X Begin motion on the X axis
WT 20 Wait 20 msec
BG Y Begin motion on the Y axis
WT 20 Wait 20 msec
BG Z Begin motion on Z axis
EN End Program

8-3

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

Figure 8.1 - Velocity Profiles of XYZ

Notes on Fig. 8.1: The X and Y axis have a ‘trapezoidal’ velocity profile, while
the Z axis has a ‘triangular’ velocity profile. The X and Y axes accelerate to
the specified speed, move at this constant speed, and then decelerate such
that the final position agrees with the command position, PR. The Z axis
accelerates, but before the specified speed is achieved, must begin
deceleration such that the axis will stop at the commanded position. All
3 axes have the same acceleration and deceleration rate, hence, the slope
of the rising and falling edges of all 3 velocity profiles are the same.

Independent Jogging

The jog mode of motion allows the user to change speed, direction and
acceleration during motion. The user specifies the jog speed (JG), acceleration
(AC), and the deceleration (DC) rate for each axis. The direction of motion
is specified by the sign of the JG parameters. When the begin command is
given (BG), the motor accelerates up to speed and continues to jog at that
speed until a new speed or stop (ST) command is issued. If the jog speed
is changed during motion, the controller will make an accelerated (or
decelerated) change to the new speed.

An instant change to the motor position can be made with the use of the
IP command. Upon receiving this command, the controller commands
the motor to a position which is equal to the specified increment plus the

VELOCITY
(COUNTS/SEC)

20000

10000

5000

15000

20 40 60 80

TIME (ms)

100

X axis velocity profile

Y axis velocity profile

Z axis velocity profile

0

8-4

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

INDEPENDENT AXIS
POSITIONING

current position. This command is useful when trying to synchronize the
position of two motors while they are moving.

Note that the controller operates as a closed-loop position controller while in
the jog mode. The SSC converts the velocity profile into a position trajectory
and a new position target is generated every sample period. This method of
control results in precise speed regulation with phase lock accuracy.

COMMAND SUMMARY - JOGGING

Parameters can be set with individual axes specifiers such as JGY=2000
(set jog speed for Y axis to 2000)

OPERAND SUMMARY - INDEPENDENT AXIS

_ACx

_DCx

_SPx

_TVx

Return acceleration rate for the axis specified by 'x'

Return deceleration rate for the axis specified by 'x'

Return the jog speed for the axis specified by 'x'

Returns the actual velocity of the axis specified by 'x' (averaged over .25 sec)

OPERAND DESCRIPTION

AC x,y,z,w

BG X,Y,Z,W

DC x,y,z,w

IP x,y,z,w

IT x,y,z,w

JG +/- x,y,z,w

ST XYZW

Specifies the acceleration rate

Begins motion

Specifies deceleration rate

Increments position instantly

Time constant for independent motion smoothing

specifies jog speed and direction

stops motion

COMMAND DESCRIPTION

8-5

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

JOG EXAMPLES

Jog in X Only
Jog X motor at 50000 count/s. After X motor is at its jog speed, begin jogging
Z in reverse direction at 25000 count/s.

INSTRUCTION INTERPRETATION
#A
AC 20000,,20000 Specify X,Z acceleration of 20000 cts/sec2
DC 20000,,20000 Specify X,Z deceleration of 20000 cts/sec2
JG 50000,,-25000 Specify jog speed and direction for X and Z axis
BG X Begin X motion
AS X Wait until X is at speed
BG Z Begin Z motion
EN

Example - Joystick Jogging
The jog speed can also be changed using an analog input such as a joystick.
Assume that for a 10 Volt input the speed must be 50000 counts/sec.

INSTRUCTION INTERPRETATION
#JOY Label
JG0 Set in Jog Mode
BGX Begin motion
#B Label for Loop
V1 = @AN[1] Read analog input
VEL = V1*50000/2047 Compute speed
JG VEL Change JG speed
JP #B Loop

Linear Interpolation Mode

The SSC provides a linear interpolation mode for 2 or more axes. In linear
interpolation mode, motion between the axes is coordinated to maintain
the prescribed vector speed, acceleration, and deceleration along the
specified path. The motion path is described in terms of incremental
distances for each axis. An unlimited number of incremental segments may
be given in a continuous move sequence, making the linear interpolation
mode ideal for following a piece-wise linear path. There is no limit to the
total move length.

8-6

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

INDEPENDENT JOGGING

The LM command selects the Linear Interpolation mode and axes for
interpolation. For example, LM YZ selects only the Y and Z axes for linear
interpolation.

When using the linear interpolation mode, the LM command only needs to
be specified once unless the axes for linear interpolation change.

SPECIFYING LINEAR SEGMENTS
The command LI x,y,z,w specifies the incremental move distance for each
axis. This means motion is prescribed with respect to the current axis
position. Up to 511 incremental move segments may be given prior to the
Begin Sequence (BGS) command. Once motion has begun, additional LI
segments may be sent to the controller.

The clear sequence (CS) command can be used to remove LI segments
stored in the buffer prior to the start of the motion. To stop the motion, use
the instructions STS or AB. The command, ST, causes a decelerated stop.
The command, AB, causes an instantaneous stop and aborts the program,
and the command AB1 aborts the motion only.

The Linear End (LE) command must be used to specify the end of a linear
move sequence. This command tells the controller to decelerate to a stop
following the last LI command. If an LE command is not given, an Abort AB1
must be used to abort the motion sequence.

It is the responsibility of the user to keep enough LI segments in the SSC
sequence buffer to ensure continuous motion. If the controller receives no
additional LI segments and no LE command, the controller will stop motion
instantly at the last vector. There will be no controlled deceleration. LM? or
_LM returns the available spaces for LI segments that can be sent to the
buffer. 511 returned means the buffer is empty and 511 LI segments can be
sent. A zero means the buffer is full and no additional segments can be sent.
As long as the buffer is not full, additional LI segments can be sent at PC bus
speeds.

The instruction _CS returns the segment counter. As the segments are
processed, _CS increases, starting at zero. This function allows the host
computer to determine which segment is being processed.

8-7

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

SPECIFYING VECTOR ACCELERATION, DECELERATION
AND SPEED:
The commands VS n, VA n, and VD n are used to specify the vector speed,
acceleration and deceleration. The SSC computes the vector speed based on
the axes specified in the LM mode. For example, LM XYZ designates linear
interpolation for the X,Y and Z axes. The vector speed for this example
would be computed using the equation:

VS2=XS2+YS2+ZS2, where XS, YS and ZS are the speed of the X,Y and Z axes.

The controller always uses the axis specifications from LM, not LI, to
compute the speed.

In cases where the acceleration causes the system to ‘jerk’, the SSC provides
a vector motion smoothing function. VT is used to set the S-curve smoothing
constant for coordinated moves.

ADDITIONAL COMMANDS
The SSC provides commands for additional control of vector motion and
program control. Note: Many of the commands used in Linear Interpolation
motion also applies to Vector motion described in the next section.

TRIPPOINTS
The command AV n is the ‘After Vector’ trippoint, which halts program
execution until the vector distance of n has been reached.

In this example, the XY system is required to perform a 90° turn. In order to
slow the speed around the corner, we use the AV 4000 trippoint, which slows
the speed to 1000 count/s. Once the motors reach the corner, the speed is
increased back to 4000 cts / s.

TRIPPOINT EXAMPLE
INSTRUCTION INTERPRETATION
#LMOVE Label
DP 0,0 Define position of X and Y axes to be 0
LMXY Define linear mode between X and Y axes.
LI 5000,0 Specify first linear segment
LI 0,5000 Specify second linear segment
LE End linear segments
VS 4000 Specify vector speed
BGS Begin motion sequence

8-8

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

LINEAR
INTERPOLATION MODE

AV 4000 Set trippoint to wait until vector distance
of 4000 is reached

VS 1000 Change vector speed
AV 5000 Set trippoint to wait until vector distance

of 5000 is reached
VS 4000 Change vector speed
EN Program end

SPECIFYING VECTOR SPEED FOR EACH SEGMENT
The instruction VS has an immediate effect and, therefore, must be given at
the required time. In some applications, such as CNC, it is necessary to
attach various speeds to different motion segments. This can be done by the
instruction.

LI x,y,z,w < n

This instruction attaches the vector speed, n, to the motion segment LI. As a
consequence, the program #LMOVE can be written in the alternative form:

VECTOR SPEED EXAMPLE
INSTRUCTION INTERPRETATION
#ALT Label for alternative program
DP 0,0 Define Position of X and Y axis to be 0
LMXY Define linear mode between X and Y axes.
LI 4000,0 <4000 Specify first linear segment with a vector

speed of 4000
LI 1000,0 < 1000 Specify second linear segment with a

vector speed of 1000
LI 0,5000 < 4000 Specify third linear segment with a vector

speed of 4000
LE End linear segments
BGS Begin motion sequence
EN Program end

CHANGING FEEDRATE:
The command VR n allows the feedrate, VS, to be scaled between 0 and 10
with a resolution of .0001. This command takes effect immediately and
causes VS to be scaled. VR also applies when the vector speed is specified
with the ‘<’ operator. This is a useful feature for feedrate override. VR does
not ratio the accelerations. For example, VR .5 results in the specification VS
2000 to be divided in half.

8-9

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

COMMAND SUMMARY - LINEAR INTERPOLATION

OPERAND SUMMARY - LINEAR INTERPOLATION

To illustrate the ability to interrogate the motion status, consider the first
motion segment of our example, #LMOVE, where the X axis moves toward
the point X=5000. Suppose that when X=3000, the controller is interrogated
using the command ‘MG _AV’. The returned value will be 3000. The value of
_CS, _VPX and _VPY will be zero.

Now suppose that the interrogation is repeated at the second segment when
Y=2000. The value of _AV at this point is 7000, _CS equals 1, _VPX=5000 and
_VPY=0.

_AV

_CS

_LE

_LM

_VPm

Return distance traveled

Segment counter - returns number of the segment in the sequence. Starting at zero

Returns the length of vector (resets after 2147483647)

Returns number of available spaces for linear segments in sequence buffer

Zero means buffer full. 512 means buffer empty

Return the absolute coordinate of the last data point along the trajectory.

(m= X.Y.Z or W)

OPERAND DESCRIPTION

LM xyzw

LM?

LI x,y,z,w < n

VSn

VAn

VDn

VRn

BGS

CS

LE

LE?

AMS

AV n

VT

Specify axis for linear interpolation

Returns number of available spaces for linear segments in the XX

sequence buffer. Zero means buffer full. 512 means buffer empty

Specify incremental distance relative to current position,

and assign vector speed n.

Specify vector speed

Specify vector acceleration

Specify vector deceleration

Specify the vector speed ratio

Begin linear sequence

Clear Sequence

Linear End- Required at end of LI sequence

Returns the length of the vector (resets after 22147483647)

Trippoint for after sequence complete

Trippoint for after relative vector distance, n

S curve smoothing constant for vector moves

COMMAND DESCRIPTION

8-10

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

LINEAR
INTERPOLATION MODE

LINEAR INTERPOLATION EXAMPLE
Linear Move
Make a coordinated linear move in the ZW plane. Move to coordinates
40000,30000 counts at a vector speed of 100000 counts/sec and vector
acceleration of 1000000 counts/sec2.

INSTRUCTION INTERPRETATION
#TEST Label
LM ZW Specify axes for linear interpolation
LI,,40000,30000 Specify ZW distances
LE Specify end move
VS 100000 Specify vector speed
VA 1000000 Specify vector acceleration
VD 1000000 Specify vector deceleration
BGS Begin sequence
AMS After motion sequence ends
EN End program

Note that the above program specifies the vector speed, VS, and not the
actual axis speeds VZ and VW. The axis speeds are determined by the SSC
from:

The resulting profile is shown in Figure 8.2.

8-11

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

Figure 8.2 - Linear Interpolation

POSITION Z

0

0 40000

FEEDRATE

0 0.1 0.5 0.6

4000 36000

30000

27000

3000

VELOCITY

Z-AXIS

VELOCITY

W-AXIS

POSITION W

TIME (sec)

TIME (sec)

TIME (sec)

8-12

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

LINEAR
INTERPOLATION MODE

Multiple Moves
This example makes a coordinated linear move in the XY plane. The Arrays
VX and VY are used to store 750 incremental distances which are filled by the
program #LOAD.

INSTRUCTION INTERPRETATION
#LOAD Load Program
DM VX [750],VY [750] Define Array
COUNT=0 Initialize Counter
N=0 Initialize position increment
#LOOP LOOP
VX [COUNT]=N Fill Array VX
VY [COUNT]=N Fill Array VY
N=N+10 Increment position
COUNT=COUNT+1 Increment counter
JP #LOOP,COUNT<750 Loop if array not full
#A Label
LM XY Specify linear mode for XY
COUNT=0 Initialize array counter
#LOOP2;JP#LOOP2,_LM=0 If sequence buffer full, wait
JS#C,COUNT=500 Begin motion on 500th segment
LI VX[COUNT],VY[COUNT] Specify linear segment
COUNT=COUNT+1 Increment array counter
JP #LOOP2,COUNT<750 Repeat until array done
LE End Linear Move
AMS After Move sequence done
MG “DONE” Send Message
EN End program
#C;BGS;EN Begin Motion Subroutine

Vector Mode: Linear and Circular Interpolation Motion

The SSC allows a long 2-D path consisting of linear and arc segments to be
prescribed. Motion along the path is continuous at the prescribed vector
speed even at transitions between linear and circular segments. The SSC
performs all the complex computations of linear and circular interpolation,
freeing the host PC from this time intensive task.

The coordinated motion mode is similar to the linear interpolation mode.
Any pair of two axes may be selected for coordinated motion consisting of
linear and circular segments. In addition, a third axis can be controlled

8-13

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

such that it remains tangent to the motion of the selected pair of axes. Note
that only one pair of axes can be specified for coordinated motion at any
given time.

The command VM m,n,p where ‘m’ and ‘n’ are the coordinated pair and p
is the tangent axis (Note: the commas which separate m,n and p are not
necessary). For example, VM XWZ selects the XW axes for coordinated
motion and the Z-axis as the tangent.

SPECIFYING VECTOR SEGMENTS
The motion segments are described by two commands; VP for linear
segments and CR for circular segments. Once a set of linear segments
and/or circular segments have been specified, the sequence is ended with
the command VE. This defines a sequence of commands for coordinated
motion. Immediately prior to the execution of the first coordinated
movement, the controller defines the current position to be zero for all
movements in a sequence. Note: This ‘local’ definition of zero does not
affect the absolute coordinate system or subsequent coordinated motion
sequences.

The command, VP xy specifies the coordinates of the end points of the
vector movement with respect to the starting point. The command, CR r,q,d
define a circular arc with a radius r, starting angle of q, and a traversed angle
d. The notation for q is that zero corresponds to the positive horizontal
direction, and for both q and d, the counter-clockwise (CCW) rotation is
positive.

Up to 511 segments of CR or VP may be specified in a single sequence and
must be ended with the command VE. The motion can be initiated with a
Begin Sequence (BGS) command. Once motion starts, additional segments
may be added.

The Clear Sequence (CS) command can be used to remove previous VP and
CR commands which were stored in the buffer prior to the start of the motion.
To stop the motion, use the instructions STS or AB1. ST stops motion at the
specified deceleration. AB1 aborts the motion instantaneously.

The Vector End (VE) command must be used to specify the end of the
coordinated motion. This command requires the controller to decelerate to
a stop following the last motion requirement. If a VE command is not given,
an Abort (AB1) must be used to abort the coordinated motion sequence.

8-14

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

VECTOR MODE:
LINEAR AND CIRCULAR

INTERPOLATION MOTION

It is the responsibility of the user to keep enough motion segments in the
SSC sequence buffer to ensure continuous motion. If the controller receives
no additional motion segments and no VE command, the controller will
stop motion instantly at the last vector. There will be no controlled
deceleration. LM? or _LM returns the available spaces for motion segments
that can be sent to the buffer. 511 returned means the buffer is empty and
511 segments can be sent. A zero means the buffer is full and no additional
segments can be sent. As long as the buffer is not full, additional segments
can be sent at PC bus speeds.

The operand _CS can be used to determine the value of the segment
counter.

SPECIFYING VECTOR ACCELERATION, DECELERATION
AND SPEED:
The commands VS n, VA n, and VD n are used to specify the vector speed,
acceleration and deceleration. The SSC computes the vector speed based on
the two axes specified in the VM mode. For example, VM YZ designates
vector mode for the Y and Z axes. The vector speed for this example would
be computed using the equation:

VS2=YS2+ZS2, where YS and ZS are the speed of the Y and Z axes.

In cases where the acceleration causes the system to ‘jerk’, the SSC provides
a vector motion smoothing function. VT is used to set the S-curve smoothing
constant for coordinated moves.

ADDITIONAL COMMANDS
The SSC provides commands for additional control of vector motion and
program control. Note: Many of the commands used in Vector Mode motion
also applies Linear Interpolation motion described in the previous section.

TRIPPOINTS
The command AV n is the ‘After Vector’ trippoint, which halts program
execution until the vector distance of n has been reached.

Specifying Vector Speed for Each Segment

The vector speed may be specified by the immediate command VS. It can
also be attached to a motion segment with the instructions

VP x,y, < n CR r,q,d < n

8-15

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

Both cases assign a vector speed of n count/s to the corresponding motion
segment.

CHANGING FEEDRATE:
The command VR n allows the feedrate, VS, to be scaled between 0 and 10
with a resolution of .0001. This command takes effect immediately and
causes VS scaled. VR also applies when the vector speed is specified with the
‘<’ operator. This is a useful feature for feedrate override. VR does not ratio
the accelerations. For example, VR .5 results in the specification VS 2000 to
be divided in half.

COMPENSATING FOR DIFFERENCES IN ENCODER
RESOLUTION:
By default, the SSC uses a scale factor of 1:1 for the encoder resolution when
used in vector mode. If this is not the case, the command, ES can be used to
scale the encoder counts. The ES command accepts two arguments which
represent the number of counts for the two encoders used for vector
motion. The smaller ratio of the two numbers will be multiplied by the
higher resolution encoder. For more information, see ES command in
Chapter 12, Command Summary.

TANGENT MOTION:
Several applications, such as cutting, require a third axis (i.e. a knife blade),
to remain tangent to the coordinated motion path. To handle these
applications, the SSC allows one axis to be specified as the tangent axis.
The VM command provides parameter specifications for describing the
coordinated axes and the tangent axis.

VM m,n,p m,n specifies coordinated axes p specifies tangent axis such
as X,Y,Z,W p=N turns off tangent axis

Before the tangent mode can operate, it is necessary to assign an axis via
the VM command and define its offset and scale factor via the TN m,n
command. m defines the scale factor in counts/degree and n defines the
tangent position that equals zero degrees in the coordinated motion plane.
The _TN can be used to return the initial position of the tangent axis.

8-16

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

VECTOR MODE:
LINEAR AND CIRCULAR

INTERPOLATION MOTION

TANGENT MOTION EXAMPLE
XY Table Control
Assume an XY table with the Z-axis controlling a knife. The Z-axis has a 2000
quad counts/rev encoder and has been initialized after power-up to point
the knife in the +Y direction. A 180° circular cut is desired, with a radius of
3000, center at the origin and a starting point at (3000,0). The motion is
CCW, ending at (-3000,0). Note that the 0° position in the XY plane is in the
+X direction. This corresponds to the position -500 in the Z-axis, and defines
the offset. The motion has two parts. First, X,Y and Z are driven to the
starting point, and later, the cut is performed. Assume that the knife is
engaged with output bit 0.

INSTRUCTION INTERPRETATION
#EXAMPLE Example program
VM XYZ XY coordinate with Z as tangent
TN 2000/360,-500 2000/360 counts/degree, position -500 is 0 degrees in XY plane
CR 3000,0,180 3000 count radius, start at 0 and go to 180 CCW
VE End vector
CB0 Disengage knife
PA 3000,0,_TN Move X and Y to starting position, move Z to initial tangent position
BG XYZ Start the move to get into position
AM XYZ When the move is complete
SB0 Engage knife
WT50 Wait 50 msec for the knife to engage
BGS Do the circular cut
AMS After the coordinated move is complete
CB0 Disengage knife
MG “ALL DONE”
EN End program

8-17

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

COMMAND SUMMARY - VECTOR MODE MOTION

OPERAND SUMMARY - VECTOR MODE MOTION

When AV is used as an operand, _AV returns the distance traveled along the
sequence.

The operands _VPX and _VPY can be used to return the coordinates of the
last point specified along the path.

VECTOR MODE EXAMPLE
Traverse the path shown in Fig. 8.3. Feedrate is 20000 counts/sec. Plane of
motion is XY

_VPM

_AV

_LM

_CS

The absolute coordinate of the axes at the last intersection along the sequence.

Distance traveled

Number of available spaces fir linear and circular segments in sequence buffer. Zero means

buffer is full 512 means buffer is empty

Segment counter - number of the segment in the sequence, starting at zero

OPERAND DESCRIPTION

VM m,n, p

VP m,n

CR r, q , ∆Θ

VS n

VA n

VD n

VR n

BGS

CS

AV n

AMS

ES m,n

VT

LM?

Specifies the axes for the planar motion where m and n represent

the planar axes and p is the tangent axis

Define target coordinates of a straight line segment in a z-axis motion sequence.

Specifies arc segment where r is the radius, q is the starting angle

and ∆Θ is the travel angle. Positive direction is CCW

Specify vector speed or feedrate of a sequence

Specify vector acceleration along the sequence

Specify vector deceleration along the sequence

Specify vector speed ratio

Begin sequence

Clear sequence

Trippoint after relative vector distance, n

Holds execution of next command until motion sequence is complete

Ellipse scale factor

S curve smoothing constant for coordinated moves

Return number of available spaces for linear and circular segments

in sequence buffer. Zero means buffer is full. 512 means buffer is empty

COMMAND DESCRIPTION

8-18

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

VECTOR MODE:
LINEAR AND CIRCULAR

INTERPOLATION MOTION

INSTRUCTION INTERPRETATION
VM XY Specify motion plane
VS 20000 Specify vector speed
VA 1000000 Specify vector acceleration
VD 1000000 Specify vector deceleration
VP -4000,0 Segment AB
CR 1500,270,-180 Segment BC
VP 0,3000 Segment CD
CR 1500,90,-180 Segment DA
VE End of sequence
BGS Begin Sequence

The resulting motion starts at the point A and moves toward points B, C, D,
A. Suppose that we interrogate the controller when the motion is halfway
between the points A and B.

The value of _AV is 2000
The value of _CS is 0
_VPX and _VPY contain the absolute coordinate of the point A

Suppose that the interrogation is repeated at a point, halfway between the
points C and D.

The value of _AV is 4000+1500 * TC + 2000=10,712
The value of _CS is 2
_VPX,_VPY contain the coordinates of the point C

Figure 8.3 - The Required Path

C (-4000,3000)

R = 1500

B (-4000,0)

D (0,3000)

A (0,0)

8-19

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

Electronic Gearing

This mode allows up to 4 axes to be electronically geared to one master axis.
The master may rotate in both directions and the geared axes will follow at
the specified gear ratio. The gear ratio may be different for each axis and
changed during motion.

The command GAX or GAY or GAZ or GAW specifies the master axis. There
may only be one master. GR x,y,z,w specifies the gear ratios for the slaves
where the ratio may be a number between +/-127.9999 with a fractional
resolution of .0001. GR 0,0,0,0 turns off electronic gearing for any set of axes.
A limit switch will also disable electronic gearing for that axis. GR causes the
specified axes to be geared to the actual position of the master. The master
axis is commanded with motion commands such as PR, PA or JG.

When the master axis is driven by the controller in the jog mode or an
independent motion mode, it is possible to define the master as the
command position of that axis, rather than the actual position. The
designation of the commanded position master is by the letter, C. For
example, GACX indicates that the gearing is the commanded position of X.

An alternative gearing method is to synchronize the slave motor to the
commanded vector motion of several axes performed by GAS. For example,
if the X and Y motor form a circular motion, the Z axis may move in
proportion to the vector move. Similarly, if X,Y and Z perform a linear
interpolation move, W can be geared to the vector move.

Electronic gearing allows the geared motor to perform a second
independent or coordinated move in addition to the gearing. For example,
when a geared motor follows a master at a ratio of 1:1, it may be advanced
an additional distance with PR, or JG, commands, or VP, or LI.

8-20

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

COMMAND SUMMARY - ELECTRONIC GEARING

OPERAND SUMMARY - ELECTRONIC GEARING

_GR x Contains the value of gear ratio for axis 'x'

OPPERAND DESCRIPTION

GA n

GR x,y,z,w

MR x,y,z,w

MF x,y,z,w

Specifies master axis for gearing where n= X,Y,Z, or W

for main encoder as master

n= XC,YC,ZC or

WC for auxiliary

encoders

n= DX, CY,DZ or

DW for auxiliary

encoders

n= S vector

move as master

Sets gear ratio for slave axes. 0 disables electronic gearing

for specified axis

Trippoint for reverse motion past specified value. Only one

field may be used

Trippoint for reverse motion past specified value. Only one

field may be used

COMMAND DESCRIPTION

8-21

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

ELECTRONIC GEARING EXAMPLES
Simple Master Slave
Master axis moves 10000 counts at slew speed of 100000 counts/sec. Y is
defined as the master. X,Z,W are geared to master at ratios of 5,-.5 and 10
respectively.

INSTRUCTION INTERPRETATION
GAY Specify master axes as Y
GR 5,,-.5,10 Set gear ratios
PR ,10000 Specify Y position
SP ,100000 Specify Y speed
BGY Begin motion

Electronic Gearing
Objective: Run two geared motors at speeds of 1.132 and -0.045 times the
speed of an external master. The master is driven at speeds between 0 and
1800 RPM (2000 counts/rev encoder).

Solution: Use a SSC controller, where the Z-axis is the master and X and Y
are the geared axes.

INSTRUCTION INTERPRETATION
MO Z Turn Z off, for external master
GA Z Specify master axis
GR 1.132,-.045 Specify gear ratios

Now suppose the gear ratio of the X-axis is to change on-the-fly to 2. This
can be achieved by commanding:

INSTRUCTION INTERPRETATION
GR 2 Specify gear ratio for X axis to be 2

In applications where both the master and the follower are controlled by the
SSC controller, it may be desired to synchronize the follower with the
commanded position of the master, rather than the actual position. This
eliminates the coupling between the axes which may lead to oscillations.

For example, assume that a gantry is driven by two axes, X,Y, on both sides.
The X-axis is the master and the Y-axis is the follower. To synchronize Y with
the commanded position of X, use the instructions:

INSTRUCTION INTERPRETATION
GA XC Specify master as commanded position of

X
GR,1 Set gear ratio for Y as 1:1
PR 3000 Command X motion
BG X Start motion on X axis

8-22

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

ELECTRONIC GEARING

You may also perform profiled position corrections in the electronic gearing
mode. Suppose, for example, that you need to advance the slave 10 counts.
Simply command:

INSTRUCTION INTERPRETATION
IP ,10 Specify an incremental position movement

of 10 on Y axis.

Under these conditions, this IP command is equivalent to:
INSTRUCTION INTERPRETATION
PR,10 Specify position relative movement of 10 on Y axis
BGY Begin motion on Y axis

Often the correction is quite large. Such requirements are common when
synchronizing cutting knives or conveyor belts.

Synchronize two conveyor belts with trapezoidal velocity correction.
INSTRUCTION INTERPRETATION
GAX Define master axis as X
GR,2 Set gear ratio 2:1 for Y
PR,300 Specify correction distance
SP,5000 Specify correction speed
AC,100000 Specify correction acceleration
DC,100000 Specify correction deceleration
BGY Start correction

Electronic Cam

The electronic cam is a motion control mode which enables the periodic
synchronization of several axes of motion. Up to 3 axes can be slaved to
one master axis. The master axis encoder must be input through a main
encoder port.

The electronic cam is a more general type of electronic gearing which allows
a table-based relationship between the axes. It allows synchronizing all the
controller axes.

To illustrate the procedure of setting the cam mode, consider the cam
relationship for the slave axis Y, when the master is X. Such a graphic
relationship is shown in Figure 8.4.

8-23

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

STEP 1. SELECTING THE MASTER AXIS
The first step in the electronic cam mode is to select the master axis. This is
done with the instruction:

INSTRUCTION
EAp where p = X,Y,Z,W

p is the selected master axis

STEP 2. SPECIFY THE MASTER CYCLE AND THE
CHANGE IN THE SLAVE AXIS (ES).
In the electronic cam mode, the position of the master is always expressed
modulo one cycle. In this example, the position of x is always expressed in
the range between 0 and 6000. Similarly, the slave position is also redefined
such that it starts at zero and ends at 1500. At the end of a cycle when the
master is 6000 and the slave is 1500, the positions of both x and y are
redefined as zero. To specify the master cycle and the slave cycle change, we
use the instruction EM.

INSTRUCTION
EM x,y,z,w

where x,y,z,w specify the cycle of the master and the total change of the
slaves over one cycle.

The cycle of the master is limited to 8,388,607 whereas the slave change per
cycle is limited to 2,147,483,647. If the change is a negative number, the
absolute value is specified. For the given example, the cycle of the master is
6000 counts and the change in the slave is 1500. Therefore, we use the
instruction:

INSTRUCTION
EM 6000,1500

STEP 3. SPECIFY THE MASTER INTERVAL AND
STARTING POINT.
Next we need to construct the ECAM table. The table is specified at uniform
intervals of master positions. Up to 256 intervals are allowed. The size of the
master interval and the starting point are specified by the instruction:

INSTRUCTION
EP m,n

where m is the interval width in counts, and n is the starting point.

8-24

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

ELECTRONIC CAM

For the given example, we can specify the table by specifying the position at
the master points of 0, 2000, 4000 and 6000. We can specify that by

INSTRUCTION
EP 2000,0

STEP 4. SPECIFY THE SLAVE POSITIONS
Next, we specify the slave positions with the instruction

INSTRUCTION
ET[n]=x,y,z,w

where n indicates the order of the point.

The value, n, starts at zero and may go up to 256. The parameters x,y,z,w
indicate the corresponding slave position. For this example, the table may
be specified by

INSTRUCTION
ET[0]=,0
ET[1]=,3000
ET[2]=,2250
ET[3]=,1500

This specifies the ECAM table.

STEP 5. ENABLE THE ECAM
To enable the ECAM mode, use the command

INSTRUCTION
EB n

where n=1 enables ECAM mode and n=0 disables ECAM mode.

STEP 6. ENGAGE THE SLAVE MOTION
To engage the slave motion, use the instruction

INSTRUCTION
EG x,y,z,w

where x,y,z,w are the master positions at which the corresponding slaves
must be engaged.

If the value of any parameter is outside the range of one cycle, the cam
engages immediately. When the cam is engaged, the slave position is
redefined, modulo one cycle.

8-25

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

STEP 7. DISENGAGE THE SLAVE MOTION
To disengage the cam, use the command

INSTRUCTION
EQ x,y,z,w

where x,y,z,w are the corresponding slave axes are disengaged.

Figure 8.4 - Electronic Cam Example

This disengages the slave axis at a specified master position. If the
parameter is outside the master cycle, the stopping is instantaneous.

Programmed start and stop can be used only when the master moves
forward.

Example
To illustrate the complete process, consider the cam relationship described
by the equation:

INSTRUCTION
Y = 0.5 * X + 100 sin (0.18*X) where X is the master, with a cycle of 2000 counts.

The cam table can be constructed manually, point by point, or
automatically by a program. The following program includes the set-up.

The instruction EAX defines Y as the master axis. The cycle of the master is
2000. Over that cycle, X varies by 1000. This leads to the instruction EM
2000,1000.

Master X4000

2250

2000 6000

3000

1500

0

8-26

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

ELECTRONIC CAM

Suppose we want to define a table with 100 segments. This implies
increments of 20 counts each. If the master points are to start at zero, the
required instruction is EP 20,0.

The following routine computes the table points. As the phase equals 0.18X
and X varies in increments of 20, the phase varies by increments of 3.6°. The
program then computes the values of Y according to the equation and
assigns the values to the table with the instruction ET[N] = ,Y.

INSTRUCTION INTERPRETATION
#SETUP Label
EAX Select X as master
EM 2000,1000 Cam cycles
EP 20,0 Master position increments
N = 0 Index
#LOOP Loop to construct table from equation
P = N*3.6 Note 3.6 = 0.18*20
S = @SIN [P] *100 Define sine position
Y = N *10+S Define slave position
ET [N] =, Y Define table
N = N+1
JP #LOOP, N<=100 Repeat the process
EN

Now suppose that the slave axis is engaged with a start signal, input 1, but
that both the engagement and disengagement points must be done at the
center of the cycle: X = 1000 and Y = 500. This implies that Y must be driven
to that point to avoid a jump.

This is done with the program:

INSTRUCTION INTERPRETATION
#RUN Label
EB1 Enable cam
PA,500 starting position
SP,5000 Y speed
BGY Move Y motor
AM After Y moved
AI1 Wait for start signal
EG,1000 Engage slave
AI - 1 Wait for stop signal
EQ,1000 Disengage slave
EN End

8-27

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

COMMAND SUMMARY - ECAM MODE

OPERAND SUMMARY - ECAM MODE

_EB

_EGx

_EMx

_EP

_EQx

Contains the state of ECAM mode (0= disabled, 1 = enabled)

Contains ecasm status for specified axis (0 = engaged 1, = disengaged)

Contains the cycle of the specified axis

Contains the status of the interval

Contains the status of ECAM mode for specified axis

OPERAND DESCRIPTION

EA x,y,z,w

EB n (n = 0 or 1)

EG x,y,z,w

EM x,y,z,w

EP m,n

EQ x,y,z,w

ET [n]

Specify ECAM master axis

Enable ECAM

ECAM go - Specifies position for engineering ECAM

Specify cam style

Specifies cam table interval and starting point

Quit ECAM

Specify ECAM table entry

COMMAND DESCRIPTION

8-28

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

ELECTRONIC CAM

ELECTRONIC CAM EXAMPLE
The following example illustrates a cam program with a master axis, Z, and
two slaves, X and Y.

INSTRUCTION INTERPRETATION
#A;V1=0 Label; Initialize variable
PA 0,0;BGXY;AMXY Go to position 0,0 on X and Y axes
EA Z Z axis as the Master for ECAM
EM 0,0,4000 Change for Z is 4000, zero for X, Y
EP400,0 ECAM interval is 400 counts with zero start
ET[0]=0,0 When master is at 0 position; 1st point.
ET[1]=40,20 2nd point in the ECAM table
ET[2]=120,60 3rd point in the ECAM table
ET[3]=240,120 4th point in the ECAM table
ET[4]=280,140 5th point in the ECAM table
ET[5]=280,140 6th point in the ECAM table
ET[6]=280,140 7th point in the ECAM table
ET[7]=240,120 8th point in the ECAM table
ET[8]=120,60 9th point in the ECAM table
ET[9]=40,20 10th point in the ECAM table
ET[10]=0,0 Starting point for next cycle
EB 1 Enable ECAM mode
JGZ=4000 Set Z to jog at 4000
EG 0,0 Engage both X and Y when Master = 0
BGZ Begin jog on Z axis
#LOOP;JP#LOOP,V1=0 Loop until the variable is set
EQ2000,2000 Disengage X and Y when Master = 2000
MF,, 2000 Wait until the Master goes to 2000
ST Z Stop the Z axis motion
EB 0 Exit the ECAM mode
EN End of the program

The above example shows how the ECAM program is structured and how
the commands can be given to the controller.

8-29

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

Contour Mode

The SSC also provides a contouring mode. This mode allows any arbitrary
position curve to be prescribed for 1 to 4 axes. This is ideal for following
computer generated paths such as parabolic, spherical or user-defined
profiles. The path is not limited to straight line and arc segments and the
path length may be infinite.

SPECIFYING CONTOUR SEGMENTS
The Contour Mode is specified with the command, CM. For example, CMXZ
specifies contouring on the X and Z axes. Any axes that are not being used in
the contouring mode may be operated in other modes.

A contour is described by position increments which are described with the
command, CD x,y,z,w over a time interval, DT n. The parameter, n, specifies
the time interval. The time interval is defined as 2n ms, where n is a number
between 1 and 8. The controller performs linear interpolation between the
specified increments, where one point is generated for each millisecond.

Consider, for example, the trajectory shown in Fig. 8.5. The position X may
be described by the points:

Point 1 X=0 at T=0ms
Point 2 X=48 at T=4ms
Point 3 X=288 at T=12ms
Point 4 X=336 at T=28ms

The same trajectory may be represented by the increments:
Increment 1 DX=48 Time=4 DT=2
Increment 2 DX=240 Time=8 DT=3
Increment 3 DX=48 Time=16 DT=4

When the controller receives the command to generate a trajectory along
these points, it interpolates linearly between the points. The resulting
interpolated points include the position 12 at 1 msec, position 24 at 2 msec,
etc.

The programmed commands to specify the above example are:
INSTRUCTION INTERPRETATION
#ACMX Specifies X axis for contour mode
DT 2 Specifies first time interval, 4 ms
CD 48;WC Specifies first position increment
DT 3 Specifies second time interval, 8 ms

8-30

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

CD 240;WC Specifies second position increment
DT 4 Specifies the third time interval, 16 ms
CD 48;WC Specifies the third position increment
DT0;CD0 Exits contour mode
EN

Figure 8.5 - The Required Trajectory

ADDITIONAL COMMANDS
The command, WC, is used as a trippoint “When Complete”. This allows the
SSC to use the next increment only when it is finished with the previous one.
Zero parameters for DT or CD exit the contour mode.

If no new data record is found and the controller is still in the contour mode,
the controller waits for new data. No new motion commands are generated
while waiting. If bad data is received, the controller responds with a ?.

The command _CS, the segment counter, returns the number of the
segment being processed. This information allows the host computer to
determine when to send additional data.

POSITION
(COUNTS)

240

96

48

192

TIME (ms)

0 4 8 12 16 20 24 28

288

336

SEGMENT 1 SEGMENT 2 SEGMENT 3

8-31

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

COMMAND SUMMARY - CONTOUR MODE

OPERAND SUMMARY - CONTOUR MODE

CONTOUR EXAMPLE
The Contour Mode is ideal for generating any arbitrary velocity profiles. The
velocity profile can be specified as a mathematical function or as a
collection of points.

The design includes two parts: Generating an array with data points and
running the program.

Generating an Array
Consider the velocity and position profiles shown in Fig. 8.6. The objective is
to rotate a motor a distance of 6000 counts in 120 ms. The velocity profile is
sinusoidal to reduce the jerk and the system vibration. If we describe the
position displacement in terms of A counts in B milliseconds, we can
describe the motion in the following manner:

Note: is the angular velocity; X is the position;
and T is the variable, time, in milliseconds.

ω

_CS Return segment number

OPERAND DESCRIPTION

CM XYZW

CDx,y,z,w

DT n

WC

Specifies which axes for contouring mode. Any non-contouring axe

may be operated in other modes

Specifies position increment over tim interval. Range is+/-32,00. Zero

end contour mode

Specifies time interval 2 msec for position increment, where n is an

integer between 1 and8. Zero ends contour mode. if n does not change,

it does not need to be specified with each CD

Waits for previous time intrval to be completed before next data record

is processed

COMMAND DESCRIPTION

8-32

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

CONTOUR MODE

In the given example, A=6000 and B=120,
the position and velocity profiles are:

X = 50T - (6000/2π) sin (2πT/120)

Note that the velocity, , in count/ms, is:

= 50 [1 - cos 2πT/120]

Figure 8.6 - Velocity Profile with Sinusoidal Acceleration

The SSC can compute trigonometric functions. However, the argument
must be expressed in degrees. Using our example, the equation for X is
written as:

X = 50T - 955 sin 3T

A complete program to generate the contour movement in this example is
given below. To generate an array, we compute the position value at
intervals of 8 ms. This is stored at the array POS. Then, the difference
between the positions is computed and is stored in the array DIF. Finally the
motors are run in the contour mode.

ω

ω

ω π

π
π

=

=

−

−

A
B
AT
B

A

B

BX

(cos)

sin

(/)

(/)

1 2

2
2

8-33

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

INSTRUCTION INTERPRETATION
#POINTS Program defines X points
DM POS[16] Allocate memory
DM DIF[15]
C=0 Set initial conditions, C is index
T=0 T is time in ms
#A
V1=50*T
V2=3*T Argument in degrees
V3=-955*@SIN[V2]+V1 Compute position
V4=@INT[V3] Integer value of V3
POS[C]=V4 Store in array POS
T=T+8
C=C+1
JP #A,C<16
#B Program to find position differences
C=0
#C
D=C+1
DIF[C]=POS[D]-POS[C] Compute the difference and store
C=C+1
JP #C,C<15
EN End first program
#RUN Program to run motor
CMX Contour Mode
DT3 4 millisecond intervals
C=0
#E
CD DIF[C] Contour Distance is in DIF
WC Wait for completion
C=C+1
JP #E,C<15
DT0
CD0 Stop Contour
EN End the program

8-34

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

CONTOUR MODE

Teach (Record and Play-Back)

Several applications require teaching the machine a motion trajectory.
Teaching can be accomplished using the SSC automatic array capture
feature to capture position data. The captured data may then be played back
in the contour mode. The following array commands are used:

INSTRUCTION INTERPRETATION
DM C[n] Dimension array
RA C[] Specify array for automatic record (up to 8 arrays)
RD _TPX Specify data for capturing (such as _TPX or _TPZ)
RC n,m Specify capture time interval where n is 2n msec,

m is number of records to be captured
RC? or _RC Returns a 1 if recording

RECORD AND PLAYBACK EXAMPLE:
INSTRUCTION INTERPRETATION
#RECORD Begin Program
DM XPOS[501] Dimension array with 501 elements
RA XPOS[] Specify automatic record
RD _TPX Specify X position to be captured
MOX Turn X motor off
RC2 Begin recording; 4 msec interval
#A;JP#A,_RC=1 Continue until done recording
#COMPUTE Compute DX
DM DX[500] Dimension Array for DX
C=0 Initialize counter
#L Label
D=C+1
DELTA=XPOS[D]-XPOS[C] Compute the difference
DX[C]=DELTA Store difference in array
C=C+1 Increment index
JP #L,C<500 Repeat until done
#PLAYBCK Begin Playback
CMX Specify contour mode
DT2 Specify time increment
I=0 Initialize array counter
#B Loop counter
CD XPOS[I];WC Specify contour data
I=I+1 Increment array counter
JP #B,I<500 Loop until done
DT 0;CD0 End contour mode
EN End program

8-35

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

For additional information about Automatic Array Capture, see Chapter 9,
Arrays.

Dual Loop (Auxiliary Encoder)

The SSC provides an interface for a second encoder for each axis except for
axes configured for stepper motor operation. When used, the second
encoder is typically mounted on the motor or the load, but may be mounted
in any position. The most common use for the second encoder is backlash
compensation, described below.

The second encoder may be a standard quadrature type, or it may provide
pulse and direction. The controller also offers the provision for inverting the
direction of the encoder rotation. The main and the auxiliary encoders are
configured with the CE command. The command form is CE x,y,z,w where
the parameters x,y,z,w each equal the sum of two integers m and n. m
configures the main encoder and n configures the auxiliary encoder.

USING THE CE COMMAND

For example, to configure the main encoder for reversed quadrature, m=2,
and a second encoder of pulse and direction, n=4, the total is 6, and the
command for the X axis is

INSTRUCTION
CE 6

M=

0

1

2

3

MAIN ENCODER

Normal quadrature

Pulse and direction

Reverse quadrature

Reverse pulse and direction

N=

0

4

8

12

SECOND ENCODER

Normal quadrature

Pulse and direction

Reserved quadrature

Reversed pulse and direction

8-36

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

TEACH
(RECORD AND PLAY-BACK)

ADDITIONAL COMMANDS FOR THE AUXILIARY
ENCODER
The command, DE x,y,z,w, can be used to define the position of the auxiliary
encoders. For example,

INSTRUCTION
DE 0,500,-30,300

sets their initial values.

The positions of the auxiliary encoders may be interrogated with the
command, DE?. For example

INSTRUCTION
DE ?,,?

returns the value of the X and Z auxiliary encoders.

The auxiliary encoder position may be assigned to variables with the
instructions

INSTRUCTION
V1= _DEX

The command, TD XYZW, returns the current position of the auxiliary encoder.

The command, DV XYZW, configures the auxiliary encoder to be used for
backlash compensation.

BACKLASH COMPENSATION
There are two methods for backlash compensation using the auxiliary
encoders:

1. Continuous dual loop
2. Sampled dual loop

To illustrate the problem, consider a situation in which the coupling
between the motor and the load has a backlash. To compensate for the
backlash, position encoders are mounted on both the motor and the load.

The continuous dual loop combines the two feedback signals to achieve
stability. This method requires careful system tuning, and depends on the
magnitude of the backlash. However, once successful, this method
compensates for the backlash continuously.

8-37

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

The second method, the sampled dual loop, reads the load encoder only at
the end point and performs a correction. This method is independent of the
size of the backlash. However, it is effective only in point-to-point motion
systems which require position accuracy only at the endpoint.

DUAL LOOP EXAMPLE

Continuous Dual Loop
Connect the load encoder to the main encoder port and connect the motor
encoder to the dual encoder port. The dual loop method splits the filter
function between the two encoders. It applies the KP (proportional) and KI
(integral) terms to the position error, based on the load encoder, and applies
the KD (derivative) term to the motor encoder. This method results in a
stable system.

The dual loop method is activated with the instruction DV (Dual Velocity),
where

INSTRUCTION
DV 1,1,1,1

activates the dual loop for the four axes and
INSTRUCTION
DV 0,0,0,0

disables the dual loop.

Note that the dual loop compensation depends on the backlash magnitude,
and in extreme cases will not stabilize the loop. The proposed compensation
procedure is to start with KP=0, KI=0 and to maximize the value of KD under
the condition DV1. Once KD is found, increase KP gradually to a maximum
value, and finally, increase KI, if necessary.

Sampled
In this example, we consider a linear slide which is run by a rotary motor via
a lead screw. Since the lead screw has a backlash, it is necessary to use a
linear encoder to monitor the position of the slide. For stability reasons, it is
best to use a rotary encoder on the motor.

Connect the rotary encoder to the X-axis and connect the linear encoder to
the auxiliary encoder of X. Assume that the required motion distance is one
inch, and that this corresponds to 40,000 counts of the rotary encoder and
10,000 counts of the linear encoder.

8-38

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

DUAL LOOP
(AUXILIARY ENCODER)

The design approach is to drive the motor a distance, which corresponds to
40,000 rotary counts. Once the motion is complete, the controller monitors
the position of the linear encoder and performs position corrections.

This is done by the following program.

INSTRUCTION INTERPRETATION
#DUALOOP Label
CE 0 Configure encoder
DE0 Set initial value
PR 40000 Main move
BGX Start motion
#Correct Correction loop
AMX Wait for motion completion
V1=10000-_DEX Find linear encoder error
V2=-_TEX/4+V1 Compensate for motor error
JP#END,@ABS[V2]<2 Exit if error is small
PR V2*4 Correction move
BGX Start correction
JP#CORRECT Repeat
#END
EN

Motion Smoothing

The SSC controller allows the smoothing of the velocity profile to reduce the
mechanical vibration of the system.

Trapezoidal velocity profiles have acceleration rates which change abruptly
from zero to maximum value. The discontinuous acceleration results in jerk
which causes vibration. The smoothing of the acceleration profile leads to a
continuous acceleration profile and reduces the mechanical shock and
vibration.

USING THE IT AND VT COMMANDS (S CURVE
PROFILING) (SERVO MOTORS SMOOTHING):

When operating with servo motors, motion smoothing can be accomplished
with the IT and VT command. These commands filter the acceleration and
deceleration functions to produce a smooth velocity profile. The resulting
velocity profile, known as S curve, has continuous acceleration and results
in reduced mechanical vibrations.

8-39

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

The smoothing function is specified by the following commands:
INSTRUCTION INTERPRETATION
IT x,y,z,w Independent time constant
VT n Vector time constant

The command, IT, is used for smoothing independent moves of the type JG,
PR, PA and the command, VT, is used to smooth vector moves of the type
VM and LM.

The smoothing parameters, x,y,z,w and n are numbers between 0 and 1 and
determine the degree of filtering. The maximum value of 1 implies no
filtering, resulting in trapezoidal velocity profiles. Smaller values of the
smoothing parameters imply heavier filtering and smoother moves.

The following example illustrates the effect of smoothing. Fig. 6.6 shows the
trapezoidal velocity profile and the modified acceleration and velocity.

Note that the smoothing process results in longer motion time.

SERVO MOTOR

Smoothing Example
INSTRUCTION INTERPRETATION
PR 20000 Position
AC 100000 Acceleration
DC 100000 Deceleration
SP 5000 Speed
IT .5 Filter for S-curve
BG X Begin

Figure 6.6 - Trapezoidal velocity and smooth velocity profiles

USING THE KS COMMAND (STEP MOTOR SMOOTHING):

When operating with step motors, motion smoothing can be accomplished
with the command, KS. The KS command smooths the frequency of step
motor pulses. Similar to the commands, IT and VT, this produces a smooth
velocity profile.

8-40

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

MOTION SMOOTHING

The step motor smoothing is specified by the following command:

KS x,y,z,w where x,y,z,w is an integer from 1 to 16 and represents the
amount of smoothing

The command, IT, is used for smoothing independent moves of the type JG,
PR, PA and the command, VT, is used to smooth vector moves of the type
VM and LM.

The smoothing parameters, x,y,z,w and n are numbers between 0 and 16
and determine the degree of filtering. The minimum value of 1 implies no
filtering, resulting in trapezoidal velocity profiles. Larger values of the
smoothing parameters imply heavier filtering and smoother moves.

Note that KS is valid only for step motors.

Homing

The Find Edge (FE) and Home (HM) instructions may be used to home the
motor to a reference. This reference is connected to the Home input line.
The HM command initializes the motor to the encoder index pulse in
addition to the Home input. The configure command (CN) is used to define
the polarity of the home input.

The Find Edge (FE) instruction is useful for initializing the motor to a home
switch. The home switch is connected to the Homing Input. When the Find
Edge command and Begin is used, the motor will accelerate up to the slew
speed and slew until a transition is detected on the Homing line. The motor
will then decelerate to a stop. A high deceleration value must be input
before the find edge command is issued for the motor to decelerate rapidly
after sensing the home switch. The velocity profile generated is shown in
Fig. 8.7.

The Home (HM) command can be used to position the motor on the index
pulse after the home switch is detected. This allows for finer positioning on
initialization. The command sequence HM and BG causes the following
sequence of events to occur.

1. Upon begin, motor accelerates to the slew speed. The direction of its
motion is determined by the state of the homing input. A zero (GND)
will cause the motor to start in the forward direction; +5V will cause
it to start in the reverse direction. The CN command is used to define
the polarity of the home input.

8-41

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

2. Upon detecting the home switch changing state, the motor begins
decelerating to a stop.

3. The motor then traverses very slowly back until the home switch
toggles again.

4. The motor then traverses forward until the encoder index pulse is
detected.

5. The SSC defines the home position (0) as the position at which the
index was detected.

HOMING EXAMPLES

Home
INSTRUCTION INTERPRETATION
#HOME Label
AC 1000000 Acceleration Rate
DC 1000000 Deceleration Rate
SP 5000 Speed for Home Search
HM X Home X
BG X Begin Motion
AM X After Complete
MG “AT HOME” Send Message
EN End

Find Edge
INSTRUCTION INTERPRETATION
#EDGE Label
AC 2000000 Acceleration rate
DC 2000000 Deceleration rate
SP 8000 Speed
FE Y Find edge command
BG Y Begin motion
AM Y After complete
MG “FOUND HOME” Print message
DP,0 Define position as 0
EN End

8-42

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

HOMING

Figure 8.7 - Motion intervals in the Home sequence

POSITION

POSITION

POSITION

POSITION

POSITION

HOME SWITCH

INDEX PULSES

MOTION REVERSE
TOWARD HOME
 DIRECTION

MOTION TOWARD INDEX
 DIRECTION

MOTION BEGINS
TOWARD HOME
 DIRECTION

8-43

P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 8

High Speed Position Capture (The Latch Function)

Often it is desirable to capture the position precisely for registration
applications. The SSC provides a position latch feature. This feature allows
the position of X,Y,Z or W to be captured within 25 microseconds of an
external low input signal. The general inputs 1 through 4 correspond to
each axis.

IN1 X-axis latch
IN2 Y-axis latch
IN3 Z-axis latch
IN4 W-axis latch

Note: To insure a position capture within 25 microseconds, the input signal
must be a transition from high to low.

The SSC Software commands, AL and RL, are used to arm the latch and
report the latched position. The steps to use the latch are as follows:

1. Give the AL XYZW command, to arm the latch for the specified axis
or axes.

2. Test to see if the latch has occurred (Input goes low) by using the _AL
X or Y or Z or W command. Example, V1=_ALX returns the state of the
X latch into V1. V1 is 1 if the latch has not occurred.

3. After the latch has occurred, read the captured position with the RL
XYZW command or _RL XYZW.

Note: The latch must be re-armed after each latching event.

HIGH SPEED POSITION EXAMPLE
INSTRUCTION INTERPRETATION
#Latch Latch program
JG,5000 Jog Y
BG Y Begin motion on Y axis
AL Y Arm Latch for Y axis
#Wait #Wait label for loop
JP #Wait,_ALY=1 Jump to #Wait label if latch has not

occurred
Result=_RLY Set value of variable ‘Result’ equal to the

report position of y axis
Result= Print result
EN En

8-44

8 : P R O G R A M M I N G M O T I O N W I T H T W O - L E T T E R C O M M A N D S Y N T A X

Overview

The SSC provides a powerful programming language that allows users to
customize the controller for their particular application. Programs can be
downloaded into the SSC memory freeing the host computer for other tasks.
However, the host computer can send commands to the controller at any
time, even while a program is being executed.

In addition to standard motion commands, the SSC provides commands
that allow the SSC to make its own decisions. These commands include
conditional jumps, event triggers and subroutines. For example, the
command JP#LOOP, n<10 causes a jump to the label #LOOP if the variable n
is less than 10.

For greater programming flexibility, the SSC provides user-defined variables,
arrays and arithmetic functions. For example, with a cut-to-length
operation, the length can be specified as a variable in a program which the
operator can change as necessary.

The following sections in this chapter discuss all aspects of creating
applications programs.

Using the SSC Editor to Enter Programs

Application programs for the SSC may be created and edited either locally
using the Tol-O-Motion SSC Editor or remotely using another editor and
then downloading the program into the controller. (Tol-O-Motion’s Editor
Window provides an editor and UPLOAD and DOWNLOAD utilities).

The SSC provides a line Editor for entering and modifying programs. The
Edit mode is entered with the ED instruction. The ED command can only be
given when the controller is not running a program.

In the Edit Mode, each program line is automatically numbered sequentially
starting with 000. If no parameter follows the ED command, the editor
prompter will default to the last line of the program in memory. If desired,
the user can edit a specific line number or label by specifying a line number
or label following ED.

9-1

Application Programming
With Two-Letter Command Syntax 9

INSTRUCTION INTERPRETATION
ED Puts Editor at end of last program
ED 5 Puts Editor at line 5
ED #BEGIN Puts Editor at label #BEGIN

The program memory space for the SSC is 1000 lines x 80 characters per line

Line numbers appear as 000,001,002 and so on. Program commands are
entered following the line numbers. Multiple commands may be given on a
single line as long as the total number of characters doesn’t exceed the limits
given above.

While in the Edit Mode, the programmer has access to special instructions
for saving, inserting and deleting program lines. These special instructions
are listed below:

EDIT MODE COMMANDS
<RETURN>
Typing the return or enter key causes the current line of entered instructions
to be saved. The editor will automatically advance to the next line. Thus,
hitting a series of <RETURN> will cause the editor to advance a series of lines.
Note, changes on a program line will not be saved unless a <return> is given.

<cntrl>P
The <cntrl>P command moves the editor to the previous line.

<cntrl>I
The <cntrl>I command inserts a line above the current line. For example, if
the editor is at line number 2 and <cntrl>I is applied, a new line will be
inserted between lines 1 and 2. This new line will be labeled line 2. The old
line number 2 is renumbered as line 3.

<cntrl>D
The <cntrl>D command deletes the line currently being edited. For example,
if the editor is at line number 2 and <cntrl>D is applied, line 2 will be deleted.
The previous line number 3 is now renumbered as line number 2.

<cntrl>Q
The <cntrl>Q quits the editor mode. In response, the SSC will return a colon.

After the Edit session is over, the user may list the entered program using the
LS command. If no number or label follows the LS command, the entire
program will be listed. The user can start listing at a specific line or label. A
range of program lines can also be displayed. For example;

9-2

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

USING THE SSC EDITOR
TO ENTER PROGRAMS

INSTRUCTION INTERPRETATION
LS List entire program
LS 5 Begin listing at line 5
LS 5,9 List lines 5 through 9
LS #A,9 List line label #A through line 9

Program Format

A SSC program consists of SSC instructions combined to solve a machine
control application. Action instructions, such as starting and stopping
motion, are combined with Program Flow instructions to form the complete
program. Program Flow instructions evaluate real-time conditions, such as
elapsed time or motion complete, and alter program flow accordingly.

Each SSC instruction in a program must be separated by a delimiter. Valid
delimiters are the semicolon (;) or carriage return. The semicolon is used to
separate multiple instructions on a single program line where the maximum
number of instructions on a line is limited by 38 characters. A carriage
return enters the final command on a program line.

USING LABELS IN PROGRAMS
All SSC programs must begin with a label and end with an End (EN)
statement. Labels start with the pound (#) sign followed by a maximum of
seven characters. The first character must be a letter; after that, numbers are
permitted. Spaces are not permitted.

The maximum number of labels allowed on the SSC series controller is 254.

INSTRUCTION INTERPRETATION
Valid Labels
#BEGIN
#SQUARE
#X1
#Begin1

Invalid Labels Problem
#1Square Can not use number to begin a label
#SQUAREPEG Can not use more than 7 characters in a label

9-3

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

LABEL EXAMPLE
INSTRUCTION INTERPRETATION
#START Beginning of the Program
PR 10000,20000 Specify relative distances on X and Y axes
BG XY Begin Motion
AM Wait for motion complete
WT 2000 Wait 2 sec
JP #START Jump to label START
EN End of Program

The above program moves X and Y 10000 and 20000 units. After the motion
is complete, the motors rest for 2 seconds. The cycle repeats indefinitely
until the stop command is issued.

SPECIAL LABELS
The SSC has some special labels, which are used to define input interrupt
subroutines, limit switch subroutines, error handling subroutines, and
command error subroutines.

INSTRUCTION INTERPRETATION
#AUTO Label for autoprogram start
#ININT Label for Input Interrupt subroutine
#LIMSWI Label for Limit Switch subroutine
#POSERR Label for excess Position Error subroutine
#MCTIME Label for timeout on Motion Complete trip point
#CMDERR Label for incorrect command subroutine
#COMINT Label for communication interrupt subroutine

9-4

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

PROGRAM FORMAT

COMMENTING PROGRAMS

Using the Command, NO
The SSC provides a command, NO, for commenting programs. This
command allows the user to include up to 37 characters on a single line
after the NO command and can be used to include comments from the
programmer as in the following example:

INSTRUCTION
#PATH
NO 2-D CIRCULAR PATH
VMXY
NO VECTOR MOTION ON X AND Y
VS 10000
NO VECTOR SPEED IS 10000
VP -4000,0
NO BOTTOM LINE
CR 1500,270,-180
NO HALF CIRCLE MOTION
VP 0,3000
NO TOP LINE
CR 1500,90,-180
NO HALF CIRCLE MOTION
VE
NO END VECTOR SEQUENCE
BGS
NO BEGIN SEQUENCE MOTION
EN
NO END OF PROGRAM

Note: The NO command is an actual controller command. Therefore,
inclusion of the NO commands will require process time by the controller.

Using REM Statements with the Tol-O-Matic Terminal Software.
If you are using Tol-O-Matic Software to communicate with the SSC
controller, you may also include REM statements. ‘REM’ statements begin
with the word ‘REM’ and may be followed by any comments which are on
the same line. The Tol-O-Matic terminal Software will remove these
statements when the program is downloaded to the controller. For example:

9-5

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

INSTRUCTION
#PATH
REM 2-D CIRCULAR PATH
VMXY
REM VECTOR MOTION ON X AND Y
VS 10000
REM VECTOR SPEED IS 10000
VP -4000,0
REM BOTTOM LINE
CR 1500,270,-180
REM HALF CIRCLE MOTION
VP 0,3000
REM TOP LINE
CR 1500,90,-180
REM HALF CIRCLE MOTION
VE
REM END VECTOR SEQUENCE
BGS
REM BEGIN SEQUENCE MOTION
EN
REM END OF PROGRAM

These REM statements will be removed when this program is downloaded
to the controller.

Executing Programs & Multitasking

The SSC can run up to four independent programs simultaneously. These
programs are called threads and are numbered 0 through 3, where 0 is the
main one. Multitasking is useful for executing independent operations such
as PLC functions that occur independently of motion.

The main thread differs from the others in the following ways:
1. Only the main thread may use the input command, IN.
2. When input interrupts are implemented for limit switches, position

errors or command errors, the subroutines are executed in thread 0.

To begin execution of the various programs, use the following instruction:
XQ #A, n

Where n indicates the thread number. If the XQ command is given with no
parameters, the first program in memory will be executed in thread 0.

9-6

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

PROGRAM FORMAT

To halt the execution of any thread, use the instruction
HX n

where n is the thread number.

Note that both the XQ and HX commands can be performed by an executing
program.

MULTITASKING EXAMPLE

Waveform on Output 1 Independent of a Move.
INSTRUCTION INTERPRETATION
#TASK1 Task1 label
AT0 Initialize reference time
CB1 Clear Output 1
#LOOP1 Loop1 label
AT 10 Wait 10 msec from reference time
SB1 Set Output 1
AT -40 Wait 40 msec from reference time, then

initialize reference
CB1 Clear Output 1
JP #LOOP1 Repeat Loop1
#TASK2 Task2 label
XQ #TASK1,1 Execute Task1
#LOOP2 Loop2 label
PR 1000 Define relative distance
BGX Begin motion
AMX After motion done
WT 10 Wait 10 msec
JP #LOOP2,@IN[2]=1 Repeat motion unless Input 2 is low
HX Halt all tasks

The program above is executed with the instruction XQ #TASK2,0 which
designates TASK2 as the main thread (ie. Thread 0). #TASK1 is executed
within TASK2.

Debugging Programs

COMMANDS
The SSC provides trace and error code commands which are used in
debugging programs. The trace command causes the controller to send
each line in a program to the host computer immediately prior to execution.

9-7

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

Tracing is enabled with the command, TR1. TR0 turns the trace function off.
Note: When the trace function is enabled, the line numbers as well as the
command line will be displayed as each command line is executed.

When there is a program error, the SSC halts the program execution at the
point where the error occurs. The line number is then displayed.

The user can obtain information about the type of error condition that
occurred by using the command, TC1. This command reports back a number
and a text message which describes the error condition. The command,
TC0 or TC, will return the error code without the text message. For more
information about the command, TC, see the Command Reference.

The SSC provides the capability to check the available program memory and
array memory. The command, DM ?, will return the number of array
elements currently available. The command, DA ?, will return the number of
arrays currently available. For example, a standard SSC will have a
maximum of 8000 array elements in up to 30 arrays. If an array of 100
elements is defined, the command DM ? will return the value 7900 and the
command DA ? will return 29.

OPERANDS
The operand _ED will return the value of the last line executed and can be
used to determine where an error occurred. For example, the command MG
_ED will display the line number in the program that failed.
The operand _DL returns the number of available labels.
The operand _UL returns the number of available variables.
The operand _DA returns the number of available arrays.
The operand _DM returns the number of available array elements.

DEBUGGING EXAMPLE:
The following program has an error. It attempts to specify a relative
movement while the X-axis is already in motion. When the program is
executed, the controller stops at line 003. The user can then query the
controller using the command, TC1. The controller responds with the
corresponding explanation:

9-8

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

DEBUGGING PROGRAMS

INSTRUCTION INTERPRETATION
:ED Edit Mode
000 #A Program Label
001 PR1000 Position Relative 1000
002 BGX Begin
003 PR5000 Position Relative 5000
004 EN End
<cntrl> Q Quit Edit Mode
:XQ #A Execute #A
?003 PR5000 Error on Line 3
:TC1 Tell Error Code
?7 Command not valid while running. Command not valid while

running
:ED 3 Edit Line 3
003 AMX;PR5000;BGX Add After Motion Done
<cntrl> Q Quit Edit Mode
:XQ #A Execute #A

Program Flow Commands

The SSC provides instructions to control program flow. The SSC program
sequencer normally executes program instructions sequentially. The
program flow can be altered with the use of event triggers, trippoints, and
conditional jump statements.

EVENT TRIGGERS & TRIPPOINTS
To function independently from the host computer, the SSC can be
programmed to make decisions based on the occurrence of an event. Such
events include waiting for motion to be complete, waiting for a specified
amount of time to elapse, or waiting for an input to change logic levels.

The SSC provides several event triggers that cause the program sequencer to
halt until the specified event occurs. Normally, a program is automatically
executed sequentially one line at a time. When an event trigger instruction
is decoded, however, the actual program sequence is halted. The program
sequence does not continue until the event trigger is “tripped”. For example,
the motion complete trigger can be used to separate two move sequences
in a program. The commands for the second move sequence will not be
executed until the motion is complete on the first motion sequence. In this
way, the SSC can make decisions based on its own status or external events
without intervention from a host computer.

9-9

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

SSC EVENT TRIGGERS

AM X Y Z W or S

AD X or Y or Z or W

AR X or Y or Z or W

AP X or Y or Z or W

MF X or Y of r Z or W

MC X or Y or Z or W

AI +/-n

AS X Y Z W S

AT +/-n

AV n

WT n

Halts program until motion is complete on the specified axes or

motion sequence (s). AM with no parameter tests for motion complete

on all axes. This command is useful for separating motion sequences

in a program.

Halts program execution until position command has reached the

specified relative distance from the start of the move. Only one axis

may be specified at a time.

Halts program execution until after specified distance from the last\

AR or AD command has elapsed. Only one axis may be

specifies at a time.

Halts program execution until after absolute position occurs. Only one

axis may be specified at a time.

Halts program execution until after forward motion reached absolute

position. Only one axis may be specified. If position is already past

the point, then MR will trip immediately. will function on geared axis.

Halt program execution until after the motion profile has been completed

and the encoder =has entered or passed the specified position.

TW x.y.z.w sets timeout to declare an error if not in position. If timeout

occurs, then the trippoint will clear and the stepcode will be set to 99.

An application program will jump to label #MCTIME.

Halts program execution until after specified input is at specified logic level.

n specifies input line. Positive is high logic level, negative is low level.

n=1 through 24.

Halts program execution until specified axis has reached its slew speed.

Halts program execution until n msec from reference time. AT O sets

reference. AT n waits n msec from reference. AT -n waits n msec from

reference and sets new reference after elapsed time.

Halts program execution until specified distance along a coordinated path

has occurred.

Halts program execution until specified time in msec has elapsed.

COMMAND FUNCTION

9-10

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

PROGRAM FLOW COMMANDS

EVENT TRIGGER EXAMPLES:
Multiple Move Sequence
The AM trippoint is used to separate the two PR moves. If AM is not used,
the controller returns a ? for the second PR command because a new PR
cannot be given until motion is complete.

INSTRUCTION INTERPRETATION
#TWOMOVE Label
PR 2000 Position Command
BGX Begin Motion
AMX Wait for Motion Complete
PR 4000 Next Position Move
BGX Begin 2nd move
EN End program

Set Output after Distance
Set output bit 1 after a distance of 1000 counts from the start of the move.
The accuracy of the trippoint is the speed multiplied by the sample period.

INSTRUCTION INTERPRETATION
#SETBIT Label
SP 10000 Speed is 10000
PA 20000 Specify Absolute position
BGX Begin motion
AD 1000 Wait until 1000 counts
SB1 Set output bit 1
EN End program

Repetitive Position Trigger
To set the output bit every 10000 counts during a move, the AR trippoint is
used as shown in the next example.

INSTRUCTION INTERPRETATION
#TRIP Label
JG 50000 Specify Jog Speed
BGX;n=0 Begin Motion
#REPEAT # Repeat Loop
AR 10000 Wait 10000 counts
TPX Tell Position
SB1 Set output 1
WT50 Wait 50 msec
CB1 Clear output 1
n=n+1 Increment counter
JP #REPEAT,n<5 Repeat 5 times
STX Stop
EN End

9-11

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

Start Motion on Input
This example waits for input 1 to go low and then starts motion. Note: The
AI command actually halts execution of the program until the input occurs.
If you do not want to halt the program sequences, you can use the Input
Interrupt function (II) or use a conditional jump on an input, such as JP
#GO,@IN[1] = -1.

INSTRUCTION INTERPRETATION
#INPUT Program Label
AI-1 Wait for input 1 low
PR 10000 Position command
BGX Begin motion
EN End program

Set Output When At Speed
INSTRUCTION INTERPRETATION
#ATSPEED Program Label
JG 50000 Specify jog speed
AC 10000 Acceleration rate
BGX Begin motion
ASX Wait for at slew speed 50000
SB1 Set output 1
EN End program

Change Speed Along Vector Path
The following program changes the feedrate or vector speed at the specified
distance along the vector. The vector distance is measured from the start of
the move or from the last AV command.

INSTRUCTION INTERPRETATION
#VECTOR Label
VMXY;VS 5000 Coordinated path
VP 10000,20000 Vector position
VP 20000,30000 Vector position
VE End vector
BGS Begin sequence
AV 5000 After vector distance
VS 1000 Reduce speed
EN End

9-12

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

PROGRAM FLOW COMMANDS

Multiple Move with Wait
This example makes multiple relative distance moves by waiting for each to
be complete before executing new moves.

INSTRUCTION INTERPRETATION
#MOVES Label
PR 12000 Distance
SP 20000 Speed
AC 100000 Acceleration
BGX Start Motion
AD 10000 Wait a distance of 10,000 counts
SP 5000 New Speed
AMX Wait until motion is completed
WT 200 Wait 200 ms
PR -10000 New Position
SP 30000 New Speed
AC 150000 New Acceleration
BGX Start Motion
EN End

Creating an Output Waveform Using AT
The following program causes Output 1 to be high for 10 msec and low for
40 msec. The cycle repeats every 50 msec.

INSTRUCTION INTERPRETATION
#OUTPUT Program label
AT0 Initialize time reference
SB1 Set Output 1
#LOOP Loop
AT 10 After 10 msec from reference,
CB1 Clear Output 1
AT -40 Wait 40 msec from reference and reset

reference
SB1 Set Output 1
JP #LOOP Jump to location #LOOP and continue

executing commands
EN End of program

9-13

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

Conditional Jumps

The SSC provides Conditional Jump (JP) and Conditional Jump to
Subroutine (JS) instructions for branching to a new program location.
Program execution will continue at the location specified by the JP or JS
command if the conditional statement is satisfied. If no conditional
statement is provided, the jump will occur automatically. See description
of conditional statements below.

Conditional jumps are useful for testing events in real-time since they allow
the SSC to make decisions without a host computer. For example, the SSC
can begin execution at a specified label or line number based on the state of
an input line.

USING THE JP COMMAND:
The JP command will cause the controller to execute commands at the
location specified by the label or line number if the condition of the jump
statement is satisfied. If no condition is specified, program execution will
automatically jump to the specified line. If the condition is not satisfied, the
controller will continue to execute the next commands in the program
sequence.

USING THE JS COMMAND:
The JS command is significantly different from the JP command. When the
condition specified by the JS command is satisfied, the controller will begin
execution at the program location specified by the line or label number. If
no conditional statement is given, the jump will always occur. However,
when the controller reaches an end statement, EN, the controller will jump
back to the location of the JS command and resume executing the next
commands. This is known as jumping to a subroutine. For more information,
see Subroutines on page 9-17.

Each jump to a subroutine causes the controller to save the line number of
the jump statement. This information is saved in an area of program
memory called the program stack. The program stack can save up to 16 line
numbers allowing a program to nest up to 16 jumps to subroutines. If it is
necessary to remove entries from the program stack, use the command ZS.
For example, while executing a subroutine, the program can be kept from
jumping back to the original program line by issuing the command ZS. This
will remove all entries in the program stack and continue executing at the
current line. See Stack Manipulation on page 9-18 and the Two Letter
Command Reference in Chapter 12.

9-14

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

CONDITIONAL STATEMENTS
The conditional statement is satisfied if it evaluates to any value other than
zero. The conditional statement can be any valid SSC numeric operand,
including variables, array elements, numeric values, functions, keywords,
and arithmetic expressions.

CONDITION TYPE
V1=6 Number
V1=V7*6 Numeric Expression
@ABS[V1]>10
V1<Count[2] Array Element
V1<V2 Variable
_TPX=0 Internal Variable
_TVX>500
V1>@AN[2] I/O
@IN[1]=0

Multiple Conditional Statements
The SSC will accept multiple conditions in a single jump statement. The
conditional statements are combined in pairs using the operands “&” and
“|”. The “&” operand between any two conditions, requires that both
statements must be true for the combined statement to be true. The “|”
operand between any two conditions, requires that only one statement be
true for the combined statement to be true. Note: Each condition must be
placed in parenthesis for proper evaluation by the controller. In addition,
the SSC will execute operations from left to right. For further information on
Mathematical Expressions and the bit-wise operators ‘&’ and ‘|’, see pg. 9-23.

For example, using variables named V1, V2, V3 and V4:
JP #TEST, (V1<V2) & (V3<V4)

In this example, this statement will cause the program to jump to the label
#TEST if V1 is less than V2 and V3 is less than V4. To illustrate this further,
consider this same example with an additional condition:

JP #TEST, ((V1<V2) & (V3<V4)) | (V5<V6)

This statement will cause the program to jump to the label #TEST under two
conditions; 1. If V1 is less than V2 and V3 is less than V4. OR 2. If V5 is less
than V6.

9-15

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

JUMP EXAMPLES

Using JP and JS
INSTRUCTION INTERPRETATION
JP #Loop, COUNT<10 Jump to #Loop if the variable, COUNT, is less than 10
JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high. After the subroutine

MOVE2 is executed, the program sequencer returns to the main program
location where the subroutine was called.

JP #BLUE,@ABS[V2]>2 Jump to #BLUE if the absolute value of variable, V2, is greater than 2
JP #C,V1*V7<=V8*V2 Jump to #C if the value of V1 times V7 is less than or equal to the value of
V8*V2
JP#A Jump to #A

Using JP command:
Move the X motor to absolute position 1000 counts and back to zero ten
times. Wait 100 msec between moves.

INSTRUCTION INTERPRETATION
#BEGIN Begin Program
COUNT=10 Initialize loop counter
#LOOP Begin loop
PA 1000 Position absolute 1000
BGX Begin move
AMX Wait for motion complete
WT 100 Wait 100 msec
PA 0 Position absolute 0
BGX Begin move
AMX Wait for motion complete
WT 100 Wait 100 msec
COUNT=COUNT-1 Decrement loop counter
JP #LOOP,COUNT>0 Test for 10 times through loop
EN End Program

9-16

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

CONDITIONAL JUMPS

COMMAND FORMAT - JP AND JS

The destination is a program line number or label where the program
sequencer will jump if the specified condition is satisfied. Note that the line
number of the first line of program memory is 0. The comma designates
“IF”. The logical condition tests two operands with logical operators.

LOGICAL OPERATORS:

Subroutines

A subroutine is a group of instructions beginning with a label and ending
with an end command (EN). Subroutines are called from the main program
with the jump subroutine instruction JS, followed by a label or line number,
and conditional statement. Up to 8 subroutines can be nested. After the
subroutine is executed, the program sequencer returns to the program
location where the subroutine was called unless the subroutine stack is
manipulated as described in the following section.

<

>

>

<=

>=

<>

less than

greater than

equal to

less than or equal to

greater than if equal to

not equal

OPERATOR DESCRIPTION

JS destination,

logical condition

JP destination,

logical condition

Jump to subroutine if logical condition is satisfied

Jump to location if logical condition is satisfied

FORMAT DESCRIPTION

9-17

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

SUBROUTINE EXAMPLE
Subroutine to draw a square 500 counts on each side. The square starts at
vector position 1000,1000.

INSTRUCTION INTERPRETATION
#M Begin main program
CB1 Clear Output Bit 1 (pick up pen)
VMXY Specify vector motion between X and Y axes
VP 1000,1000;VE;BGS Define vector position; move pen
AMS Wait for after motion trippoint
SB1 Set Output Bit 1 (put down pen)
JS #Square;CB1 Jump to square subroutine
EN End main program
#Square Square subroutine
V1=500;JS #L Define length of side, Jump to subroutine #L
V1=-V1;JS #L Switch direction, Jump to subroutine #L
EN End subroutine #Square
#L;PR V1,V1;BGX Subroutine #L, Define relative position movement on X and Y; Begin motion
AMX;BGY;AMY After motion on X, Begin Y, Wait for motion on Y to complete
EN End subroutine #L

STACK MANIPULATION
It is possible to manipulate the subroutine stack by using the ZS command.
Every time a JS instruction, interrupt or automatic routine (such as
#POSERR or #LIMSWI) is executed, the subroutine stack is incremented by
1. Normally the stack is restored with an EN instruction. Occasionally it is
desirable not to return back to the program line where the subroutine or
interrupt was called. The ZS1 command clears 1 level of the stack. This allows
the program sequencer to continue to the next line. The ZS0 command resets
the stack to its initial value. For example, if a limit occurs and the #LIMSWI
routine is executed, it is often desirable to restart the program sequence
instead of returning to the location where the limit occurred. To do this, give
a ZS command at the end of the #LIMSWI routine.

9-18

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

SUBROUTINES

AUTOMATIC SUBROUTINES FOR MONITORING
CONDITIONS
Often it is desirable to monitor certain conditions continuously without
tying up the host or SSC program sequences. The SSC can monitor several
important conditions in the background. These conditions include checking
for the occurrence of a limit switch, a defined input, position error, or a
command error. Automatic monitoring is enabled by inserting a special,
predefined label in the applications program. The pre-defined labels are:

For example, the #POSERR subroutine will automatically be executed when
any axis exceeds its position error limit. The commands in the #POSERR
subroutine could decode which axis is in error and take the appropriate
action. In another example, the #ININT label could be used to designate an
input interrupt subroutine. When the specified input occurs, the program
will be executed automatically.

NOTE: An application program must be running for automatic monitoring
to function.

#AUTO

#LIMSWI

#ININT

#POSERR

#MCTIME

#CMDERR

#COMINT

Automatically start program on power up

Limit switch on any axis goes low

Iput specified by II goes low

Position error exceeds limit specified by ER

Motion complete timeout occurred. Timeout period

set by TW command

Bad command given

Commuication interrupt routine

SUBROUTINE DESCRIPTION

9-19

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

MORE SUBROUTINE EXAMPLES

Limit Switch
This program prints a message upon the occurrence of a limit switch.
Note, for the #LIMSWI routine to function, the SSC must be executing an
applications program from memory. This can be a very simple program that
does nothing but loop on a statement, such as #LOOP;JP #LOOP;EN. Motion
commands, such as JG 5000 can still be sent from the PC even while the
“dummy” applications program is being executed.

INSTRUCTION INTERPRETATION
#LOOP Dummy Program
JP #LOOP;EN Jump to Loop
#LIMSWI Limit Switch Label
MG “LIMIT OCCURRED” Print Message
RE Return to main program

XQ #LOOP Execute Dummy Program
JG 5000 Jog X axis at rate of 5000 counts / sec
BGX Begin motion on X axis

Now, when a forward limit switch occurs on the X axis, the #LIMSWI
subroutine will be executed.

NOTE: The RE command is used to return from the #LIMSWI subroutine.
The #LIMSWI will continue to be executed until the limit switch is cleared
(goes high).

Position Error
INSTRUCTION INTERPRETATION
#LOOP Dummy Program
JP #LOOP;EN Loop
#POSERR Position Error Routine
V1=_TEX Read Position Error
MG “EXCESS POSITION ERROR” Print Message
MG “ERROR=”,V1= Print Error
RE Return from Error

While running the ‘dummy’ program, if the position error on the X axis exceeds
that value specified by the ER command, the #POSERR routine will execute.

NOTE: The RE command is used to return from the #POSERR subroutine
The #POSERR routine will continue to be executed until the position error
is cleared (is less than the ER limit).

9-20

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

SUBROUTINES

Input Interrupt
INSTRUCTION INTERPRETATION
#A Label
II1 Input Interrupt on 1
JG 30000,,,60000 Jog
BGXW Begin Motion
#LOOP;JP#LOOP;EN Loop
#ININT Input Interrupt
STXW;AM Stop Motion
#TEST;JP #TEST, @IN[1]=0 Test for Input 1 still low
JG 30000,,,6000 Restore Velocities
BGXW;RI Begin motion and Return to Main Program
EN

NOTE: Use the RI command to return from #ININT subroutine.

Motion Complete Timeout
INSTRUCTION INTERPRETATION
#BEGIN Begin main program
TW 1000 Set the time out to 1000 ms
PA 10000 Position Absolute command
BGX Begin motion
MCX Motion Complete trip point
EN End main program
#MCTIME Motion Complete Subroutine
MG “X fell short” Send out a message
EN End subroutine

This simple program will issue the message “X fell short” if the X axis does
not reach the commanded position within 1 second of the end of the
profiled move.

Bad Command
INSTRUCTION INTERPRETATION
#BEGIN Begin main program
IN “ENTER SPEED”, SPEED Prompt for speed
JG SPEED;BGX; Begin motion
JP #BEGIN Repeat
EN End main program
#CMDERR Command error utility
JP#DONE,_ED<>2 Check if error on line 2
JP#DONE,_TC<>6 Check if out of range

9-21

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

MG “SPEED TOO HIGH” Send message
MG “TRY AGAIN” Send message
ZS1 Adjust stack
JP #BEGIN Return to main program
#DONE End program if other error
ZS0 Zero stack
EN End program

The above program prompts the operator to enter a jog speed. If the
operator enters a number out of range (greater than 8 million), the
#CMDERR routine will be executed prompting the operator to enter a new
number.

Communication Interrupt
A SSC is used to move the X axis back and forth from 0 to 10000. This motion
can be paused, resumed and stopped via input from an auxiliary port
terminal.

INSTRUCTION INTERPRETATION
#BEGIN Label for beginning of program
CC 9600,0,0,0 Setup communication configuration for auxiliary serial port
CI ,2 Setup communication interrupt for auxiliary serial port
MG {P2}”Type 0 to stop motion” Message out of auxiliary port
MG {P2}”Type 1 to pause motion” Message out of auxiliary port
MG {P2}”Type 2 to resume motion” Message out of auxiliary port
RATE=2000 Variable to remember speed
SPX=RATE Set speed of X axis motion
#LOOP Label for Loop
PAX=10000 Move to absolute position 10000
BGX Begin Motion on X axis
AMX Wait for motion to be complete
PAX=0 Move to absolute position 0
BGX Begin Motion on X axis
AMX Wait for motion to be complete
JP #LOOP Continually loop to make back and forth motion
EN End main program
#COMINT Interrupt Routine
CI0 Clear interrupt
JP #STOP,P2CH=”0” Check for 0 (stop motion)
JP #PAUSE,P2CH=”1” Check for 1 (pause motion)
JP #RESUME,P2CH=”2” Check for 2 (resume motion)
EN1,1 Do nothing
#STOP Routine for stopping motion
STX;ZS;EN Stop motion on X axis; Zero program stack; End Program

9-22

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

SUBROUTINES

#PAUSE Routine for pausing motion
RATE=_SPX Save current speed setting of X axis motion
SPX=0 Set speed of X axis to zero (allows for pause)
#RESUME Routine for resuming motion
SPX=RATE Set speed on X axis to original speed
EN1,1 Re-enable trip-point and Re-enable the communication interrupt

Mathematical Expressions

For manipulation of data, the SSC provides the use of the following
mathematical operators:

The numeric range for addition, subtraction and multiplication operations
is +/-2,147,483,647.9999. The precision for division is 1/65,000.

Mathematical operations are executed from left to right. Calculations within
a parentheses have precedence.

MATHEMATICAL EXPRESSIONS
INSTRUCTION INTERPRETATION
SPEED=7.5*V1/2 The variable, SPEED, is equal to 7.5 multiplied by V1 and divided by 2
COUNT=COUNT+2 The variable, COUNT, is equal to the current value plus 2.
RESULT=_TPX-(@COS[45]*40) Puts the position of X - 28.28 in RESULT. 40 * cosine of 45° is 28.28
TEMP=@IN[1]&@IN[2] TEMP is equal to 1 only if Input 1 and Input 2 are high

+

–

*

/

&

I

()

Addition

Subtraction

Multiplication

Division

Logical And (bit-wise)

Logical or (n some computers, a solid line appears

as a broken line)

Parenthesis

OPERATOR FUNCTION

9-23

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

BIT-WISE OPERATORS
The mathematical operators & and | are bit-wise operators. The operator, &,
is a Logical And. The operator, |, is a Logical Or. These operators allow for
bit-wise operations on any valid SSC numeric operand, including variables,
array elements, numeric values, functions, keywords, and arithmetic
expressions. The bit-wise operators may also be used with strings.

Bit-wise operators are useful for separating characters from an input string.
When using the input command for string input, the input variable holds 6
bytes of data. Each byte is eight bits, so a number represented as 32 bits of
integer and 16 bits of fraction. Each ASCII character is represented as one
byte (8 bits), therefore the input variable can hold a six character string. The
first character of the string will be placed in the top byte of the variable and
the last character will be placed in the lowest significant byte of the fraction.
The characters can be individually separated by using bit-wise operations as
illustrated in the following example:

INSTRUCTION INTERPRETATION
#TEST Begin main program
IN “ENTER”,LEN{S6} Input character string of up to 6 characters into variable ‘LEN’
FLEN=@FRAC[LEN] Define variable ‘FLEN’ as fractional part of variable ‘LEN’
FLEN=$10000*FLEN Shift FLEN by 32 bits (IE - convert fraction, FLEN, to integer)
LEN1=(FLEN&$00FF) Mask top byte of FLEN and set this value to variable ‘LEN1’
LEN2=(FLEN&$FF00)/$100 Let variable, ‘LEN2’ = top byte of FLEN
LEN3=LEN&$000000FF Let variable, ‘LEN3’ = first (lowest significant) byte of LEN
LEN4=(LEN&$0000FF00)/$100 Let variable, ‘LEN4’ = second byte of LEN
LEN5=(LEN&$00FF0000)/$10000 Let variable, ‘LEN5’ = third byte of LEN
LEN6=(LEN&$FF000000)/$1000000 Let variable, ‘LEN6’ = fourth byte of LEN
MG LEN6 {S4} Display ‘LEN6’ as string message of up to 4 chars
MG LEN5 {S4} Display ‘LEN5’ as string message of up to 4 chars
MG LEN4 {S4} Display ‘LEN4’ as string message of up to 4 chars
MG LEN3 {S4} Display ‘LEN3’ as string message of up to 4 charsMG
MG LEN2 {S4} Display ‘LEN2’ as string message of up to 4 chars
MG LEN1 {S4} Display ‘LEN1’ as string message of up to 4 chars
EN

This program will accept a string input of up to 6 characters, parse each
character, and then display each character. Notice also that the values used
for masking are represented in hexadecimal (as denoted by the preceding
‘$’).

9-24

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

MATHEMATICAL EXPRESSIONS

To illustrate further, if the user types in the string “TESTME” at the input
prompt, the controller will respond with the following:

T Response from command MG LEN6 {S4}
E Response from command MG LEN5 {S4}
S Response from command MG LEN4 {S4}
T Response from command MG LEN3 {S4}
M Response from command MG LEN2 {S4}
E Response from command MG LEN1 {S4}

Functions

Functions may be combined with mathematical expressions. The order of
execution of mathematical expressions is from left to right and can be over-
ridden by using parentheses.

USING FUNCTIONS
INSTRUCTION INTERPRETATION
V1=@ABS[V7] The variable, V1, is equal to the absolute value of variable V7.
V2=5*@SIN[POS] The variable, V2, is equal to five times the sine of the variable, POS.
V3=@IN[1] The variable, V3, is equal to the digital value of input 1.
V4=2*(5+@AN[5]) The variable, V4, is equal to the value of analog input 5 plus 5,

then multiplied by 2.

@SIN[n]

@COS[n]

@COM[n]

@ABS[n]

@FRAC[n]

@INT[n]

@RND[n]

@SQR[n]

@IN[n]

@OUT[n]

@AN[n]

Sine of n (n in degrees, resolution of 1/128, degrees, max +/- 4 billion)

Cosine of n (n in degrees , resolution of 1/128, degrees max +/- 4 billion)

1's compliment of n

Absolute value of n

fraction portion of n

Interger portion of n

Round of n (rounds up if the fractional part of n is .5 or greater)

Square root of (accuracy is +/- .0004)

Return status of digital input n

status of digital outp[ut n

Return volatage measured at analog input n

FUNCTION DESCRIPTION

9-25

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

Variables

The maximum number of variables available with a SSC is 254. These
variables can be numbers or strings. Variables are useful in applications
where specific parameters, such as position or speed, must be able to
change. Variables can be assigned by an operator or determined by program
calculations. For example, a cut-to-length application may require that a cut
length be variable.

Each variable is defined by a name which can be up to eight characters.
The name must start with an alphabetic character, however, numbers are
permitted in the rest of the name. Spaces are not permitted. Variable names
should not be the same as SSC instructions. For example, PR is not a good
choice for a variable name.

VALID VARIABLE NAMES
VARIABLE
POSX
POS1
SPEEDZ

INVALID VARIABLE NAMES
VARIABLE PROBLEM
REALLONGNAME Cannot have more than 8 characters
124 Cannot begin variable name with a number
SPEED Z Cannot have spaces in the name

ASSIGNING VALUES TO VARIABLES:
Assigned values can be numbers, internal variables and keywords,
functions, controller parameters and strings;

Variables hold 6 bytes of data, 4 bytes of integer (231)followed by two bytes
of fraction providing a range of values of +/-2,147,483,647.9999.

Numeric values can be assigned to programmable variables using the
equal sign.

Any valid SSC function can be used to assign a value to a variable. For
example, V1=@ABS[V2] or V2=@IN[1]. Arithmetic operations are also
permitted.

9-26

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

To assign a string value, the string must be in quotations. String variables
can contain up to six characters which must be in quotations.

Variable values may be assigned to controller parameters such as PR or SP.

EXAMPLE
INSTRUCTION INTERPRETATION
POSX=_TPX Assigns returned value from TPX command to variable POSX.
SPEED=5.75 Assigns value 5.75 to variable SPEED
INPUT=@IN[2] Assigns logical value of input 2 to variable INPUT
V2=V1+V3*V4 Assigns the value of V1 plus V3 times V4 to the variable V2.
VAR=”CAT” Assign the string, CAT, to VAR
PR V1 Assign value of variable V1 to PR command for X axis
SP VS*2000 Assign VS*2000 to SP command

Displaying the Value of Variables at the Terminal
Variables may be sent to the screen using the format, variable=. For
example, V1= , returns the value of the variable V1.

PROGRAM EXAMPLE

Using Variables for Joystick
The example below reads the voltage of an X-Y joystick and assigns it to
variables VX and VY to drive the motors at proportional velocities, where

10 Volts = 3000 rpm = 200000 c/sec
Speed/Analog input = 200000/10 = 20000

INSTRUCTION INTERPRETATION
#JOYSTIK Label
JG 0,0 Set in Jog mode
BGXY Begin Motion
#LOOP Loop
VX=@AN[1]*20000 Read joystick X
VY=@AN[2]*20000 Read joystick Y
JG VX,VY Jog at variable VX,VY
JP#LOOP Repeat
EN End

9-27

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

Operands

Operands allow motion or status parameters of the SSC to be incorporated
into programmable variables and expressions. An operand contains data
and must be used in a valid expression or function. Most SSC commands
have an equivalent operand - which are designated by adding an underscore
(_) prior to the SSC command. Commands which have an associated operand
are listed in the Command Reference as “Used as an Operand” .. Yes.

Status commands such as Tell Position return actual values, whereas action
commands such as GN or SP return the values in the SSC registers. The axis
designation is required following the command.

EXAMPLES

Operand Usage

* - These keywords have corresponding commands while the keywords _LF,
_LR, and TIME do not have any associated commands. All keywords are
listed in the Command Summary, Chapter 12.

Keywords
INSTRUCTION INTERPRETATION
V1=_LFX Assign V1 the logical state of the Forward Limit Switch on the X-axis
V3=TIME Assign V3 the current value of the time clock
V4=_HMW Assign V4 the logical state of the Home input on the W-axis

_BGn

_DA

_DL

_HMn

_LFn

_LRX

_UL

TIME

* Is equal to a 1 if ,motion on axis 'n' is complete, otherwise equal to 0.

*Is equal to the number of arrays available

*Is equal to the available memory

*Is equal to status of Home Switch (equals 0 or 1)

* Is equal to status of forward limit switch input of axis 'n' (equals 0 or 1)

* Is equal to status of reverse limit switch input of axis 'n' (equals 0 or 1)

* Is equal to the number of available variables

Free-running real time clock (off by 2.4% - resets with power on).

NOTE: TIME does not use an underscore character (_) as other keys.

OPERAND DESCRIPTION

9-28

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

Arrays

For storing and collecting numerical data, the SSC provides array space for
8000 elements. The arrays are one dimensional and up to 30 different arrays
may be defined. Each array element has a numeric range of 4 bytes of
integer (231)followed by two bytes of fraction (+/-2,147,483,647.9999).

Arrays can be used to capture real-time data, such as position, torque and
analog input values. In the contouring mode, arrays are convenient for
holding the points of a position trajectory in a record and playback
application.

DEFINING ARRAYS
An array is defined with the command DM. The user must specify a name
and the number of entries to be held in the array. An array name can
contain up to eight characters, starting with an uppercase alphabetic
character. The number of entries in the defined array is enclosed in [].

EXAMPLE

Using the Command, DM
INSTRUCTION INTERPRETATION
DM POSX[7] Defines an array names POSX with seven entries
DM SPEED[100] Defines an array named speed with 100 entries
DM POSX[0] Frees array space

ASSIGNMENT OF ARRAY ENTRIES
Like variables, each array element can be assigned a value. Assigned values
can be numbers or returned values from instructions, functions and
keywords.

Array elements are addressed starting at count 0. For example the first
element in the POSX array (defined with the DM command, DM POSX[7])
would be specified as POSX[0].

Values are assigned to array entries using the equal sign. Assignments are
made one element at a time by specifying the element number with the
associated array name.

NOTE: Arrays must be defined using the command, DM, before assigning
entry values.

9-29

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

EXAMPLE

Assigning Values to Array Entries
INSTRUCTION INTERPRETATION
DM SPEED[10] Dimension Speed Array
SPEED[1]=7650.2 Assigns the first element of the array, SPEED the value 7650.2
SPEED[1]= Returns array element value
POSX[10]=_TPX Assigns the 10th element of the array POSX the returned value from the

tell position command.
CON[2]=@COS[POS]*2 Assigns the second element of the array CON the cosine of the variable POS

multiplied by 2.
TIMER[1]=TIME Assigns the first element of the array timer the returned value of the

TIME keyword.

USING A VARIABLE TO ADDRESS ARRAY ELEMENTS
An array element number can also be a variable. This allows array entries to
be assigned sequentially using a counter. For example;

INSTRUCTION INTERPRETATION
#A Begin Program
COUNT=0;DM POS[10] Initialize counter and define array
#LOOP Begin loop
WT 10 Wait 10 msec
POS[COUNT]=_TPX Record position into array element
POS[COUNT]= Report position
COUNT=COUNT+1 Increment counter
JP #LOOP,COUNT<10 Loop until 10 elements have been stored
EN End Program

The above example records 10 position values at a rate of one value per 10
msec. The values are stored in an array named POS. The variable, COUNT, is
used to increment the array element counter. The above example can also
be executed with the automatic data capture feature described below.

Uploading and Downloading Arrays to On Board Memory
Arrays may be uploaded and downloaded using the QU and QD commands.

INSTRUCTION
QU array[],start,end,delim
QD array[],start,end

9-30

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

ARRAYS

where array is an array name such as A[].

Start is the first element of array (default=0)

End is the last element of array (default=last element)

Delim specifies whether the array data is separated by a comma (delim=1)
or a carriage return (delim=0).

The file is terminated using <control>Z, <control>Q, <control>D or \.

AUTOMATIC DATA CAPTURE INTO ARRAYS
The SSC provides a special feature for automatic capture of data such as
position, position error, inputs or torque. This is useful for teaching motion
trajectories or observing system performance. Up to eight types of data can
be captured and stored in four arrays. The capture rate or time interval may
be specified. Recording can done as a one time event or as a circular
continuous recording.

COMMAND SUMMARY - AUTOMATIC DATA CAPTURE

Note: X may be replaced by Y,Z or W for capturing data on other axes.

RA n[],m[],o[],p[]

RD

type1, type2,

type3, type4

RC n,m

RC?

Selects up to four arrays for data capture. The arrays must be defined

with the DM command.

Selects the type of data to be recorded, where type1, type2, type3,

and type4 represent the various tyoe of data (see table below).

The order of data type is important and corresponds with the order

of m,n,o,p arrays in the arrays command.

The RC command begins data collection. Sets data capture time

interval where n s an integer between 1 and 8 and designates

2n between data. m is optional and specifies the number of

elements to be captured. If m is not defined, the number of

elements defaults to the smallest array defined by DM. When m is

a negative number, the recording is done continuously in a circular

manner. _RD is the recording pointer and indicates the address of

 the next array element. n=0 stops recording.

Returns 0 or 1 where, 0 denotes not recording, 1 specifies

recording in progress.

COMMAND DESCRIPTION

9-31

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

OPERAND SUMMARY - AUTOMATIC DATA CAPTURE

EXAMPLE

Recording into An Array
During a position move, store the X and Y positions and position error every
2 msec.

INSTRUCTION INTERPRETATION
#RECORD Begin program
DM XPOS[300],YPOS[300] Define X,Y position arrays
DM XERR[300],YERR[300] Define X,Y error arrays
RA XPOS[],XERR[],YPOS[],YERR[] Select arrays for capture
RD _TPX,_TEX,_TPY,_TEY Select data types
PR 10000,20000 Specify move distance
RC1 Start recording now, at rate of 2 msec
BG XY Begin motion
#A;JP #A,RC=1 Loop until done
MG “DONE” Print message
EN End program
#PLAY Play back
N=0 Initial Counter
JP# DONE,N>300 Exit if done
N= Print Counter
X POS[N]= Print X position
Y POS[N]= Print Y position
XERR[N]= Print X error
YERR[N]= Print Y error
N=N+1 Increment Counter
#DONE Done

DEALLOCATING ARRAY SPACE
Array space may be deallocated using the DA command followed by the
array name. DA*[0] deallocates all the arrays.

_RC

_RD

Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording

in progress.

Return address of next array element.

OPERAND DESCRIPTION

9-32

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

ARRAYS

Input of Data (Numeric and String)

The command, IN, is used to prompt the user to input numeric or string
data. Using the IN command, the user may specify a message prompt by
placing a message in quotations. When the controller executes an IN
command, the controller will wait for the input of data. The input data is
assigned to the specified variable or array element.

INSTRUCTION INTERPRETATION
IN “Enter Length”, LENX Use input command, IN, to query the user

In this example, the message “Enter Length” is displayed on the computer
screen. The controller waits for the operator to enter a value. The operator
enters the numeric value which is assigned to the variable, LENX.

CUT-TO-LENGTH PROGRAM EXAMPLE
In this example, a length of material is to be advanced a specified distance.
When the motion is complete, a cutting head is activated to cut the material.
The length is variable, and the operator is prompted to input it in inches.
Motion starts with a start button which is connected to input 1.

The load is coupled with a 2 pitch lead screw. A 2000 count/rev encoder is
on the motor, resulting in a resolution of 4000 counts/inch. The program
below uses the variable LEN, to length. The IN command is used to prompt
the operator to enter the length, and the entered value is assigned to the
variable LEN.

INSTRUCTION INTERPRETATION
#BEGIN LABEL
AC 800000 Acceleration
DC 800000 Deceleration
SP 5000 Speed
LEN=3.4 Initial length in inches
#CUT Cut routine
AI1 Wait for start signal
IN “enter Length(IN)”, LEN Prompt operator for length in inches
PR LEN *4000 Specify position in counts
BGX Begin motion to move material
AMX Wait for motion done
SB1 Set output to cut
WT100;CB1 Wait 100 msec, then turn off cutter
JP #CUT Repeat process
EN End program

9-33

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

OPERATOR DATA ENTRY MODE
The Operator Data Entry Mode permits data to be entered at anytime. In
this mode, the input will not be interpreted as SSC commands and input
such as ST or JG will not be recognized as commands. In this mode, the SSC
provides a buffer for receiving characters. This mode may only be used
when executing an applications program.

The Operator Data Entry Mode may be specified for either Port 1 or Port 2 or
both. The mode may be exited with the \ or <escape> key.

NOTE: This is not used for high rate data transfer.

For Port 1: Use the third field of the CI command to set the Data Mode. A
1 specifies Operator Data Mode, a 0 disables the Data Mode.

For Port 2: Use the third field of the CC command to set the Data Mode.
A 0 configures P2 as a general port for the Operator Data Mode.

To capture and decode characters in the Operator Data Mode, the SSC
provides four special keywords for Port 1 (P1) and Port 2 (P2).
Port 1 (Main) Keyword Port 2 (Aux) Keyword Function

Note: The value of P1CD and P2CD returns to zero after the corresponding
string or number is read.

These keywords may be used in an applications program to decode data.
They may be used in conditional statements with logical operators.

PORT 1

(MAIN)

KEYWORD

P1CH

P1ST

P1NM

P1CD

PORT 2

(AUX)

KEYWORD

P2CH

P2ST

P2NM

P2CD

FUNCTION

Contains the last character recieved

Contains the recieved string

Contains the recieved number

Contains the status code:

-1 mode disabled

0 nothing recieved

1 recieved character, but not <enter>

2 recieved string, not a number

3 recieved number

9-34

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

INPUT OF DATA
(NUMERIC AND STRING)

KEYWORD EXAMPLES:
INSTRUCTION INTERPRETATION
JP #LOOP,P2CD< >3 Checks to see if status code is 3 (number received)
JP #P,P1CH=”V” Checks if last character received was a V
PR P2NM Assigns received number to position
JS #XAXIS,P1ST=”X” Checks to see if received string is X

USING COMMUNICATION INTERRUPT
The SSC provides a special interrupt for communication allowing the
application program to be interrupted by input from the user. The interrupt
is enabled using the CI command. The syntax for the command is

INSTRUCTION INTERPRETATION
CI m,n,o:
m=0 Don’t interrupt Port 1
1 Interrupt on <enter> Port 1
2 Interrupt on any character Port 1
-1 Clear any characters in buffer
n=0 Don’t interrupt Port 2
1 Interrupt on <enter> Port 2
2 Interrupt on any character Port 2
-1 Clear any characters in buffer
o=0 Disable operator data mode for P1
1 Enable operator data mode for P1

The #COMINT label is used for the communication interrupt. For example,
the SSC can be configured to interrupt on any character received on Port 2.
The #COMINT subroutine is entered when a character is received and the
subroutine can decode the characters. At the end of the routine the EN
command is used. EN,1 will re-enable the interrupt and return to the line of
the program where the interrupt was called, EN will just return to the line of
the program where it was called without re-enabling the interrupt. As with
any automatic subroutine, a program must be running in thread 0 at all
times for it to be enabled.

9-35

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

COMMUNICATION INTERRUPT PROGRAM EXAMPLE

Using the #COMINT Routine:
A SSC is used to jog the X and Y axis. This program automatically begins
upon power-up and allows the user to input values from the main serial
port terminal. The speed of either axis may be changed during motion by
specifying the axis letter followed by the new speed value. An S stops motion
on both axes.

COMMAND INTERPRETATION
#AUTO Label for Auto Execute
SPEEDX=10000 Initial X speed
SPEEDY=10000 Initial Y speed
CI 2,,1 Set Port 1 for Character Interrupt
JG SPEEDX,SPEEDY Specify jog mode speed for X and Y axis
BGXY Begin motion
#PRINT Routine to print message to terminal
MG “TO CHANGE SPEEDS” Print message
MG “TYPE X OR Y”
MG “TYPE S TO STOP”
#JOGLOOP Loop to change Jog speeds
JG SPEEDX,SPEEDY Set new jog speed
JP #JOGLOOP
EN End of main program
#COMINT Interrupt routine
CI0 Clear interrupt
JP #A,P1CH=”X” Check for X
JP #B,P1CH=”Y” Check for Y
JP #C,P1CH=”S” Check for S
ZS1;CI2;JP#JOGLOOP Jump if not X,Y,S
#A;JS#NUM
SPEEDX=VAL New X speed
ZS1;CI2;JP#PRINT Jump to Print
#B;JS#NUM
SPEEDY=VAL New Y speed
ZS1;CI2;JP#PRINT Jump to Print
#C;ST;AMX;CI-1 Stop motion on S
MG{^8}, “THE END”
ZS;EN,1 End-Re-enable interrupt
#NUM Routine for entering new jog speed
MG “ENTER”,PICH{S},”AXIS } Prompt for value
SPEED” {N

9-36

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

INPUT OF DATA
(NUMERIC AND STRING)

#NUMLOOP; CI-1 Check for enter
#NMLP Routine to check input from terminal
JP #NMLP,P1CD<2 Jump to error if string
JP #ERROR,P1CD=2 Read value
VAL=P1NM
EN End subroutine
#ERROR;CI-1 Error Routine
MG “INVALID-TRY AGAIN” Error message
JP #NMLP
EN End

INPUTTING STRING VARIABLES
String variables with up to six characters may be input using the specifier,
{Sn} where n represents the number of string characters to be input. If n is
not specified, six characters will be accepted. For example, IN “Enter X,Y or
Z”, V{S} specifies a string variable to be input.

The SSC, stores all variables as 6 bytes of information. When a variable is
specified as a number, the value of the variable is represented as 4 bytes of
integer and 2 bytes of fraction. When a variable is specified as a string, the
variable can hold up to 6 characters (each ASCII character is 1 byte). When
using the IN command for string input, the first input character will be
placed in the top byte of the variable and the last character will be placed in
the lowest significant byte of the fraction. The characters can be individually
separated by using bit-wise operations, see Bit-Wise Operators, page 9-24.

OUTPUT OF DATA (NUMERIC AND STRING)
Numerical and string data can be output from the controller using several
methods. The message command, MG, can output string and numerical
data. Also, the controller can be commanded to return the values of
variables and arrays, as well as other information using the interrogation
commands (the interrogation commands are described in chapter 5).

SENDING MESSAGES
Messages may be sent out of the serial ports using the message command,
MG. This command sends specified text and numerical or string data in
ASCII format.

Text strings are specified in quotes and variable or array data is designated
by the name of the variable or array. For example:

INSTRUCTION
MG “The Final Value is”, RESULT

9-37

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

In addition to variables, functions and commands, responses can be used in
the message command. For example:

INSTRUCTION
MG “Analog input is”, @AN[1]
MG “The Gain of X is”, _GNX

Specifying the Serial Port for Messages:
By default, messages will be sent through port 1, the main serial port. The
serial port can be specified with the specifier, {P1} for the main serial port
and {P2} for auxiliary serial port thus:

INSTRUCTION
MG {P2} “Hello World”

Formatting Messages
String variables can be formatted using the specifier, {Sn} where n is the
number of characters, 1 through 6. For example:

INSTRUCTION
MG STR {S3}

This statement returns 3 characters of the string variable named STR.

Numeric data may be formatted using the {Fn.m} expression following the
completed MG statement. {$n.m} formats data in HEX instead of decimal.
The actual numerical value will be formatted with n characters to the left of
the decimal and m characters to the right of the decimal. Leading zeros will
be used to display specified format.

For example:

MG “The Final Value is”, RESULT {F5.2}

If the value of the variable RESULT is equal to 4.1, this statement
returns the following:

The Final Value is 00004.10

If the value of the variable RESULT is equal to 999999.999, the above
message statement returns the following:

The Final Value is 99999.99

9-38

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

INPUT OF DATA
(NUMERIC AND STRING)

The message command normally sends a carriage return and line feed
following the statement. The carriage return and the line feed may be
suppressed by sending {N} at the end of the statement. This is useful when a
text string needs to surround a numeric value.
Example:

INSTRUCTION
#A
JG 50000;BGX;ASX
MG “The Speed is”, _TVX {F5.1} {N}
MG “counts/sec”
EN

When #A is executed, the above example will appear on the screen as:

The speed is 50000 counts/sec

Using the MG Command to Configure Terminals
The MG command can be used to configure a terminal. Any ASCII character
can be sent by using the format {^n} where n is any integer between 1 and
255.

Example:
INSTRUCTION
MG {^07} {^255}

sends the ASCII characters represented by 7 and 255 to the bus.

Summary of Message Functions:

" "

{ Fn.m }

{N}

{P1} or {P2}

{Sn}

{$n.m}

{^n}

Surrounds text string

Formats numeric values in decimal n digits to the right of the decimal point

and m to the left.

Suppresses carriage return/line feed

Send message to main port or auxilliary port

Sends the first n characters a string variable, where n is 1 through 6

Formats numeric vcalues in hexidecimal

Sends ASCII character specified by interger n

FUNCTION DESCRIPTION

9-39

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

DISPLAYING VARIABLES AND ARRAYS
Variables and arrays may be sent to the screen using the format, VARIABLE=
or ARRAY[X]=. For example, V1= , returns the value of V1. These values may
also be displayed using the message command, MG. If a variable was not
previously defined, using the command, VARIABLE=, will cause the variable
to be defined and the controller will not return an error. If the MG command
is used to display a variable which has not been defined, the controller will
return an error.

EXAMPLE

Printing a Variable and an Array element
INSTRUCTION INTERPRETATION
#DISPLAY Label
DM POSX[7] Define Array POSX with 7 entries
PR 1000 Position Command
BGX Begin
AMX After Motion
V1=_TPX Assign Variable V1
POSX[1]=_TPX Assign the first entry
V1= Print V1

FORMATTING THE RESPONSE OF INTERROGATION
COMMANDS
The command, PF, can change format of the values returned by the
interrogation commands:

INSTRUCTION
DP?
ER?
PA?
PR?

TE
TP

The numeric values may be formatted in decimal or hexadecimal* with a
specified number of digits to the right and left of the decimal point using the
PF command.

Position Format is specified by:
PF m.n

9-40

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

INPUT OF DATA
(NUMERIC AND STRING)

where m is the number of digits to the left of the decimal point (0 through 10)
and n is the number of digits to the right of the decimal point (0 through 4).

A negative sign for m specifies hexadecimal format.

Hex values are returned preceded by a $ and in 2’s complement. Hex values
should be input as signed 2’s complement, where negative numbers have a
negative sign. The default format is PF 10.0.

If the number of decimal places specified by PF is less than the actual value,
a nine appears in all the decimal places.

Examples:
INSTRUCTION INTERPRETATION
DP21 Define position
TPX Tell position
0000000021 Response from controller with default format
PF4 Change format to 4 places
TPX Tell position
0021 Response from controller with new format
PF-4 Change to hexadecimal format
TPX Tell Position
$0015 Response from controller in hexadecimal format
PF2 Format 2 places
TPX Tell Position
99 Response from controller - returns 99 if position greater than 99

Global Formatting Variables and Array Elements
The Variable Format (VF) command is used to format variables and array
elements. The VF command is specified by:

INSTRUCTION
VF m.n

where m is the number of digits to the left of the decimal point (0 through 10)
and n is the number of digits to the right of the decimal point (0 through 4).

A negative sign for m specifies hexadecimal format. The default format for
VF is VF 10.4 Hex values are returned preceded by a $ and in 2’s complement.

9-41

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

INSTRUCTION INTERPRETATION
V1=10 Assign V1
V1= Return V1
0000000010.0000 Response from controller with default format
VF2.2 Change format
V1= Return V1
10.00 Response from controller with new format
VF-2.2 Specify hex format
V1= Return V1
$0A.00 Response from controller in hexadecimal format
VF1 Change format
V1= Return V1
9 Response from controller - returns 9 if value greater than 9

Local Formatting of Variables
PF and VF commands are global format commands that effect the format of
all relevant returned values and variables. Variables may also be formatted
locally. To format locally, use the command, {Fn.m} or {$n.m} following the
variable name and the ‘=’ symbol. F specifies decimal and $ specifies
hexadecimal. n is the number of digits to the left of the decimal, and m is
the number of digits to the right of the decimal. For example:

INSTRUCTION INTERPRETATION
V1=10 Assign V1
V1= Return V1
0000000010.0000 Response from controller with default

format
V1={F4.2} Specify local format
0010.00 Response from controller with new format
V1={$4.2} Specify hex format
$000A.00 Response from controller in hexadecimal

format
V1=”ALPHA” Assign string “ALPHA” to V1
V1={S4} Specify string format first 4 characters
ALPH Response from controller in string format

The local format is also used with the MG command.

9-42

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

INPUT OF DATA
(NUMERIC AND STRING)

CONVERTING TO USER UNITS
Variables and arithmetic operations make it easy to input data in desired
user units such as inches or RPM.

The SSC position parameters such as PR, PA and VP have units of
quadrature counts. Speed parameters such as SP, JG and VS have units of
counts/sec. Acceleration parameters such as AC, DC, VA and VD have units
of counts/sec^2. The controller interprets time in milliseconds.

All input parameters must be converted into these units. For example, an
operator can be prompted to input a number in revolutions. A program
could be used such that the input number is converted into counts by
multiplying it by the number of counts/revolution.

EXAMPLE

Converting to User Units
INSTRUCTION INTERPRETATION
#RUN Label
IN “ENTER # OF REVOLUTIONS”,N1 Prompt for revs
PR N1*2000 Convert to counts
IN “ENTER SPEED IN RPM”,S1 Prompt for RPMs
SP S1*2000/60 Convert to counts/sec
IN “ENTER ACCEL IN RAD/SEC2”,A1 Prompt for ACCEL
AC A1*2000/(2*3.14) Convert to counts/sec2
BG Begin motion
EN End program

Programmable Hardware I/O

DIGITAL OUTPUTS
The SSC has an 8-bit uncommitted output port for controlling external
events. Each bit on the output port may be set and cleared with the Software
instructions SB (Set Bit) and CB(Clear Bit), or OB (define output bit).

EXAMPLES

Using Set Bit and Clear Bit Commands (SB, CB)
INSTRUCTION INTERPRETATION
SB6 Sets bit 6 of output port
CB4 Clears bit 4 of output port

9-43

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

The Output Bit (OB) instruction is useful for setting or clearing outputs
depending on the value of a variable, array, input or expression. Any non-
zero value results in a set bit.

Using the Output Bit Command (OB)
INSTRUCTION INTERPRETATION
OB1, POS Set Output 1 if the variable POS is non zero. Clear Output 1 if POS equals 0.
OB 2, @IN [1] Set Output 2 if Input 1 is high. If Input 1 is low, clear Output 2.
OB 3, @IN [1]&@IN [2] Set Output 3 only if Input 1 and Input 2 are high.
OB 4, COUNT [1] Set Output 4 if element 1 in the array COUNT is non-zero.

The output port can be set by specifying an 8-bit word using the instruction
OP (Output Port). This instruction allows a single command to define the
state of the entire 8-bit output port, where 20 is output 1, 21 is output 2 and
so on. A 1 designates that the output is on.

Using the Output Port Command (OP)
INSTRUCTION INTERPRETATION
OP6 Sets outputs 2 and 3 of output port to high. All other bits are 0.
OP0 Clears all bits of output port to zero
OP 255 Sets all bits of output port to one.

Using OP to Turn on Output After Move
INSTRUCTION INTERPRETATION
#OUTPUT Label
PR 2000 Position Command
BG Begin
AM After move
SB1 Set Output 1
WT 1000 Wait 1000 msec
CB1 Clear Output 1
EN End

DIGITAL INPUTS
The SSC has eight digital inputs for controlling motion by local switches.
The @IN[n] function returns the logic level of the specified input 1 through
8. For example, a Jump on Condition instruction can be used to execute a
sequence if a high condition is noted on an input 3. To halt program execution,
the After Input (AI) instruction waits until the specified input has occurred.

9-44

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

PROGRAMMABLE
HARDWARE I/O

EXAMPLES

Using the AI command:
INSTRUCTION INTERPRETATION
JP #A,@IN[1]=0 Jump to A if input 1 is low
JP #B,@IN[2]=1 Jump to B if input 2 is high
AI 7 Wait until input 7 is high
AI -6 Wait until input 6 is low

Start Motion on Switch
Motor X must turn at 4000 counts/sec when the user flips a panel switch to
on. When panel switch is turned to off position, motor X must stop turning.

Solution: Connect panel switch to input 1 of SSC. High on input 1 means
switch is in on position.

INSTRUCTION INTERPRETATION
#S;JG 4000 Set speed
AI 1;BGX Begin after input 1 goes high
AI -1;STX Stop after input 1 goes low
AMX;JP #S After motion, repeat
EN;

INPUT INTERRUPT FUNCTION
The SSC provides an input interrupt function which causes the program to
automatically execute the instructions following the #ININT label. This
function is enabled using the II m,n,o command. The m specifies the
beginning input and n specifies the final input in the range. The parameter
o is an interrupt mask. If m and n are unused, o contains a number with the
mask. A 1 designates that input to be enabled for an interrupt, where 20 is
bit 1, 21 is bit 2 and so on. For example, II,,5 enables inputs 1 and 3
(20 + 22 = 5).

A low input on any of the specified inputs will cause automatic execution of
the #ININT subroutine. The Return from Interrupt (RI) command is used to
return from this subroutine to the place in the program where the interrupt
had occurred. If it is desired to return to somewhere else in the program
after the execution of the #ININT subroutine, the Zero Stack (ZS) command
is used followed by unconditional jump statements.

IMPORTANT: Use the RI instruction (not EN) to return from the #ININT
subroutine.

9-45

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

EXAMPLE

Input Interrupt
INSTRUCTION INTERPRETATION
#A Label #A
II 1 Enable input 1 for interrupt function
JG 30000,-20000 Set speeds on X and Y axes
BG XY Begin motion on X and Y axes
#B Label #B
TP XY Report X and Y axes positions
WT 1000 Wait 1000 milliseconds
JP #B Jump to #B
EN End of program
#ININT Interrupt subroutine
MG “Interrupt occurred” Display message
ST XY Stops motion on X and Y axes
#LOOP
JP #LOOP,@IN[1]=0 Loop until Interrupt cleared
JG 15000,10000 Specify new speeds
WT 300 Wait 300 milliseconds
BG XY Begin motion on X and Y axes
RI Return from Interrupt subroutine

ANALOG INPUTS
The SSC provides seven analog inputs. The value of these inputs in volts
may be read using the @AN[n] function where n is the analog input 1
through 7. The resolution of the Analog-to-Digital conversion is 12 bits.
Analog inputs are useful for reading special sensors such as temperature,
tension or pressure.

The following examples show programs which cause the motor to follow an
analog signal. The first example is a point-to-point move. The second
example shows a continuous move.

EXAMPLES

Position Follower (Point-to-Point)
Objective: The motor must follow an analog signal. When the analog signal
varies by 10V, motor must move 10000 counts.

Method: Read the analog input and command X to move to that point.

9-46

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

PROGRAMMABLE
HARDWARE I/O

INSTRUCTION INTERPRETATION
#Points Label
SP 7000 Speed
AC 80000;DC 80000 Acceleration
#Loop
VP=@AN[1]*1000 Read analog input and compute position
PA VP Command position
BGX Start motion
AMX After completion
JP #Loop Repeat
EN End

Position Follower (Continuous Move)
Method: Read the analog input, compute the commanded position and the
position error. Command the motor to run at a speed in proportions to the
position error.

INSTRUCTION INTERPRETATION
#Cont Label
AC 80000;DC 80000 Acceleration rate
JG 0 Start job mode
BGX Start motion
#Loop
VP=@AN[1]*1000 Compute desired position
VE=VP-_TPX Find position error
VEL=VE*20 Compute velocity
JG VEL Change velocity
JP #Loop Change velocity
EN End

Application Programming Examples

WIRE CUTTER
An operator activates a start switch. This causes a motor to advance the wire
a distance of 10”. When the motion stops, the controller generates an output
signal which activates the cutter. Allowing 100 ms for the cutting completes
the cycle.

Suppose that the motor drives the wire by a roller with a 2” diameter. Also
assume that the encoder resolution is 1000 lines per revolution. Since the
circumference of the roller equals 2πinches, and it corresponds to 4000
quadrature, one inch of travel equals:

4000/2π= 637 count/inch

9-47

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

This implies that a distance of 10 inches equals 6370 counts, and a slew
speed of 5 inches per second, for example, equals 3185 count/sec.

The input signal may be applied to input 1, for example, and the output
signal is chosen as output 1. The motor velocity profile and the related input
and output signals are shown in Fig. 9.1.

The program starts at a state that we define as #A. Here the controller waits
for the input pulse on I1. As soon as the pulse is given, the controller starts
the forward motion.

Upon completion of the forward move, the controller outputs a pulse for
20 ms and then waits an additional 80 ms before returning to #A for a new
cycle.

INSTRUCTION FUNCTION
#A Label
AI1 Wait for input 1
PR 6370 Distance
SP 3185 Speed
BGX Start Motion
AMX After motion is complete
SB1 Set output bit 1
WT 20 Wait 20 ms
CB1 Clear output bit 1
WT 80 Wait 80 ms
JP #A Repeat the process

Fig. 9.1 - Motor Velocity and the Associated input/output signals

START PULSE I1

MOTOR VELOCITY

OUTPUT PULSE

TIME INTERVALS

move

output

wait ready move

9-48

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

APPLICATION
PROGRAMMING EXAMPLES

X-Y CONTROLLER
An X-Y-Z system must cut the pattern shown in Fig. 9.2. The X-Y axis moves
the plate while the Z-axis raises and lowers the cutting tool.

The solid curves in Fig. 9.2 indicate sections where cutting takes place.
Those must be performed at a feedrate of 1 inch per second. The dashed
line corresponds to non-cutting moves and should be performed at 5 inch
per second. The acceleration rate is 0.1 g.

The motion starts at point A, with the Z-axis raised. An X-Y motion to point
B is followed by lowering the Z-axis and performing a cut along the circle.
Once the circular motion is completed, the Z-axis is raised and the motion
continues to point C, etc.

Assume that all of the 3 axes are driven by lead screws with 10 turns-per-
inch pitch. Also assume encoder resolution of 1000 lines per revolution. This
results in the relationship:

1 inch = 40,000 counts
and the speeds of
1 in/sec = 40,000 count/sec
5 in/sec = 200,000 count/sec

an acceleration rate of 0.1g equals

0.1g = 38.6 in/s2 = 1,544,000 count/s2

Note that the circular path has a radius of 2” or 80000 counts, and the
motion starts at the angle of 270° and traverses 360° in the CW (negative
direction). Such a path is specified with the instruction

CR 80000,270,-360

Further assume that the Z must move 2” at a linear speed of 2” per second.
The required motion is performed by the following instructions:

9-49

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

INSTRUCTION INTERPRETATION
#A Label
VM XY Vector move for XY
VP 160000,160000 Positions
VE End Vector Motion
VS 200000 Vector Speed
VA 1544000 Vector Acceleration
BGS Start Motion
AMS When motion is complete
PR,,-80000 Move Z down
SP,,80000 Z speed
BGZ Start Z motion
AMZ Wait for completion of Z motion
CR 80000,270,-360 Circle
VE
VS 40000 Feedrate
BGS Start circular move
AMS Wait for completion
PR,,80000 Move Z up
BGZ Start Z move
AMZ Wait for Z completion
PR -21600 Move X
SP 20000 Speed X
BGX Start X
AMX Wait for X completion
PR,,-80000 Lower Z
BGZ
AMZ
CR 80000,270,-360 Z second circle move
VE
VS 40000
BGS
AMS
PR,,80000 Raise Z
BGZ
AMZ
VP -37600,-16000 Return XY to start
VE
VS 200000
BGS
AMS
EN

9-50

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

APPLICATION
PROGRAMMING EXAMPLES

Figure 9.2 - Motor Velocity and the Associated input/output signals

SPEED CONTROL BY JOYSTICK
The speed of a motor is controlled by a joystick. The joystick produces a
signal in the range between -10V and +10V. The objective is to drive the
motor at a speed proportional to the input voltage.

Assume that a full voltage of 10 Volts must produce a motor speed of 3000
rpm with an encoder resolution of 1000 lines or 4000 count/rev. This speed
equals:

3000 rpm = 50 rev/sec = 200000 count/sec

The program reads the input voltage periodically and assigns its value to the
variable VIN. To get a speed of 200,000 ct/sec for 10 volts, we select the
speed as

Speed = 20000 x VIN

9-51

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

The corresponding velocity for the motor is assigned to the VEL variable.

INSTRUCTION INTERPRETATION
#A Label
JG0 Set jog speed of zero
BGX Begin jogging (at speed zero)
#B Label
VIN=@AN[1] Set variable, VIN, to value of analog input 1
VEL=VIN*20000 Set variable, VEL to multiple of variable of VIN
JG VEL Update jog speed to value of variable VEL
JP #B Loop back to label, #B
EN End

POSITION CONTROL BY JOYSTICK
This system requires the position of the motor to be proportional to the
joystick angle. Furthermore, the ratio between the two positions must be
programmable. For example, if the control ratio is 5:1, it implies that when
the joystick voltage is 5 Volts, corresponding to 1028 counts, the required
motor position must be 5120 counts. The variable V3 changes the position
ratio.

INSTRUCTION INTERPRETATION
#A Label
V3=5 Initial position ratio
DP0 Define the starting position
JG0 Set motor in jog mode as zero
BGX Start
#B
V1=@AN[1] Read analog input
V2=V1*V3 Compute the desired position
V4=V2-_TPX-_TEX Find the following error
V5=V4*20 Compute a proportional speed
JG V5 Change the speed
JP #B Repeat the process
EN End

9-52

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

APPLICATION
PROGRAMMING EXAMPLES

BACKLASH COMPENSATION BY SAMPLED DUAL-LOOP
The continuous dual loop, enabled by the DV1 function is an effective way
to compensate for backlash. In some cases, however, when the backlash
magnitude is large, it may be difficult to stabilize the system. In those cases,
it may be easier to use the sampled dual loop method described below.

This design example addresses the basic problems of backlash in motion
control systems. The objective is to control the position of a linear slide
precisely. The slide is to be controlled by a rotary motor, which is coupled to
the slide by a leadscrew. Such a leadscrew has a backlash of 4 micron, and
the required position accuracy is for 0.5 micron.

The basic dilemma is where to mount the sensor. If you use a rotary sensor,
you get a 4 micron backlash error. On the other hand, if you use a linear
encoder, the backlash in the feedback loop will cause oscillations due to
instability.

An alternative approach is the dual-loop, where we use two sensors, rotary
and linear. The rotary sensor assures stability (because the position loop is
closed before the backlash) whereas the linear sensor provides accurate load
position information. The operation principle is to drive the motor to a
given rotary position near the final point. Once there, the load position is
read to find the position error and the controller commands the motor to
move to a new rotary position which eliminates the position error.

Since the required accuracy is 0.5 micron, the resolution of the linear sensor
should preferably be twice finer. A linear sensor with a resolution of 0.25
micron allows a position error of +/-2 counts.

The dual-loop approach requires the resolution of the rotary sensor to be
equal or better than that of the linear system. Assuming that the pitch of the
lead screw is 2.5mm (approximately 10 turns per inch), a rotary encoder of
2500 lines per turn or 10,000 count per revolution results in a rotary
resolution of 0.25 micron. This results in equal resolution on both linear and
rotary sensors.

To illustrate the control method, assume that the rotary encoder is used as a
feedback for the X-axis, and that the linear sensor is read and stored in the
variable LINPOS. Further assume that at the start, both the position of X and
the value of LINPOS are equal to zero. Now assume that the objective is to
move the linear load to the position of 1000.

9-53

A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X : 9

The first step is to command the X motor to move to the rotary position of
1000. Once it arrives we check the position of the load. If, for example, the
load position is 980 counts, it implies that a correction of 20 counts must be
made. However, when the X-axis is commanded to be at the position of
1000, suppose that the actual position is only 995, implying that X has a
position error of 5 counts, which will be eliminated once the motor settles.
This implies that the correction needs to be only 15 counts, since 5 counts
out of the 20 would be corrected by the X-axis. Accordingly, the motion
correction should be:

Correction = Load Position Error - Rotary Position Error

The correction can be performed a few times until the error drops below +/-
2 counts. Often, this is performed in one correction cycle.

EXAMPLE

Backlash Compensation by Sampled Dual Loop
INSTRUCTION INTERPRETATION
#A Label
DP0 Define starting positions as zero
LINPOS=0
PR 1000 Required distance
BGX Start motion
#B
AMX Wait for completion
WT 50 Wait 50 msec
LIN POS = _DEX Read linear position
ER=1000-LINPOS-_TEX Find the correction
JP #C,@ABS[ER]<2 Exit if error is small
PR ER Command correction
BGX Begin motion on X axis
JP #B Repeat the process
#C Label
EN End program

9-54

9 : A P P L I C A T I O N P R O G R A M M I N G W I T H T W O - L E T T E R C O M M A N D S Y N T A X

APPLICATION
PROGRAMMING EXAMPLES

Introduction

The SSC provides several hardware and Software features to check for error
conditions and to inhibit the motor on error. These features help protect the
various system components from damage.

WARNING: Machinery in motion can be dangerous! It is the responsibility
of the user to design effective error handling and safety protection as part of
the machine. Since the SSC is an integral part of the machine, the engineer
should design his overall system with protection against a possible
component failure on the SSC. Tol-O-Matic shall not be liable or responsible
for any incidental or consequential damages.

Hardware Protection

The SSC includes hardware input and output protection lines for various
error and mechanical limit conditions. These include:

OUTPUT PROTECTION LINES
Amp Enable - This signal goes low when the motor off command is given,
when the position error exceeds the value specified by the Error Limit (ER)
command, or when off-on-error condition is enabled (OE1) and the abort
command is given. Each axis amplifier has separate amplifier enable lines.
This signal also goes low when the watch-dog timer is activated, or upon
reset. Note: The standard configuration of the AEN signal is TTL active low.

INPUT PROTECTION LINES
Abort - A low input stops commanded motion instantly without a controlled
deceleration. For any axis in which the Off-On-Error function is enabled, the
amplifiers will be disabled. This could cause the motor to ‘coast’ to a stop. If
the Off-On-Error function is not enabled, the motor will instantaneously
stop and servo at the current position. The Off-On-Error function is further
discussed in this chapter.

Forward Limit Switch - Low input inhibits motion in forward direction.
If the motor is moving in the forward direction when the limit switch is
activated, the motion will decelerate and stop. In addition, if the motor is
moving in the forward direction, the controller will automatically jump to
the limit switch subroutine, #LIMSWI (if such a routine has been written by
the user). The CN command can be used to change the polarity of the limit
switches.

10-1

Hardware & Software Protection10

Reverse Limit Switch - Low input inhibits motion in reverse direction. If the
motor is moving in the reverse direction when the limit switch is activated,
the motion will decelerate and stop. In addition, if the motor is moving in
the reverse direction, the controller will automatically jump to the limit
switch subroutine, #LIMSWI (if such a routine has been written by the user).
The CN command can be used to change the polarity of the limit switches.

Software Protection

PROGRAMMABLE ERROR LIMIT
The SSC provides a programmable error limit for servo operation. The error
limit can be set for any number between 1 and 32767 using the ER n
command. The default value for ER is 16384.

Example:
ER 200,300,400,500 Set X-axis error limit for 200, Y-axis error limit
to 300, Z-axis error limit to 400 counts, W-axis error limit to 500 counts

ER,1,,10 Set Y-axis error limit to 1 count, set W-axis error limit to 10
counts.

The units of the error limit are quadrature counts. The error is the difference
between the command position and actual encoder position. If the absolute
value of the error exceeds the value specified by ER, the SSC will generate
several signals to warn the host system of the error condition. These signals
include:

SIGNAL OR FUNCTION INDICATION OF ERROR
POSERR Jumps to automatic excess position error subroutine
Error Light Turns on when position error exceeds error limit
OE Function Shuts motor off by setting AEN output line low if OE1.

The position error of X,Y,Z and W can be monitored during execution using
the TE command.

10-2

1 0 : H A R D W A R E & S O F T W A R E P R O T E C T I O N

HARDWARE PROTECTION

PROGRAMMABLE POSITION LIMITS
The SSC provides programmable forward and reverse position limits. These
are set by the BL and FL Software commands. Once a position limit is
specified, the SSC will not accept position commands beyond the limit.
Motion beyond the limit is also prevented.

Example - Using Position Limits
INSTRUCTION INTERPRETATION
DP0,0,0 Define Position
BL -2000,-4000,-8000 Set Reverse position limit
FL 2000,4000,8000 Set Forward position limit
JG 2000,2000,2000 Jog
BG XYZ Begin
(motion stops at forward limits)

OFF-ON-ERROR
The SSC controller has a built in function which can turn off the motors
under certain error conditions. This function is know as “Off-On-Error”. To
activate the OE function for each axis, specify 1 for X,Y,Z and W axis. To
disable this function, specify 0 for the axes. When this function is enabled,
the specified motor will be disabled under the following 3 conditions:

1. The position error for the specified axis exceeds the limit set with the
command, ER

2. The abort command is given

3. The abort input is activated with a low signal.

Note: If the motors are disabled while they are moving, they may ‘coast’ to a
stop because they are no longer under servo control.

To re-enable the system, use the Reset (RS) or Servo Here (SH) command.

Examples - Using Off-On-Error
INSTRUCTION INTERPRETATION
OE 1,1,1,1 Enable off-on-error for X,Y,Z and W
OE 0,1,0,1 Enable off-on-error for Y and W axes and disable off-on-error for X and Z axes

10-3

H A R D W A R E & S O F T W A R E P R O T E C T I O N : 1 0

AUTOMATIC ERROR ROUTINE
The #POSERR label causes the statements following to be automatically
executed if error on any axis exceeds the error limit specified by ER. The
error routine must be closed with the RE command. The RE command
returns from the error subroutine to the main program.

NOTE: The Error Subroutine will be entered again unless the error condition
is gone.

Example - Using Automatic Error Subroutine
INSTRUCTION INTERPRETATION
#A;JP #A;EN “Dummy” program
#POSERR Start error routine on error
MG “error” Send message
SB 1 Fire relay
STX Stop motor
AMX After motor stops
SHX Servo motor here to clear error
RE Return to main program

NOTE: An applications program must be executing for the #POSERR routine
to function.

LIMIT SWITCH ROUTINE
The SSC provides forward and reverse limit switches which inhibit motion
in the respective direction. There is also a special label for automatic
execution of a limit switch subroutine. The #LIMSWI label specifies the start
of the limit switch subroutine. This label causes the statements following to
be automatically executed if any limit switch is activated and that axis
motor is moving in that direction. The RE command ends the subroutine.

The state of the forward and reverse limit switches may also be tested
during the jump-on-condition statement. The _LR condition specifies the
reverse limit and _LF specifies the forward limit. X,Y,Z, or W following LR or
LF specifies the axis. The CN command can be used to configure the
polarity of the limit switches.

10-4

1 0 : H A R D W A R E & S O F T W A R E P R O T E C T I O N

SOFTWARE PROTECTION

Example - Using Limit Switch Subroutine
INSTRUCTION INTERPRETATION
#A;JP #A;EN Dummy Program
#LIMSWI Limit Switch Utility
V1=_LFX Check if forward limit
V2=_LRX Check if reverse limit
JP#LF,V1=0 Jump to #LF if forward
JP#LR,V2=0 Jump to #LR if reverse
JP#END Jump to end
#LF #LF
MG “FORWARD LIMIT” Send message
STX;AMX Stop motion
PR-1000;BGX;AMX Move in reverse
JP#END End
#LR #LR
MG “REVERSE LIMIT” Send message
STX;AMX Stop motion
PR1000;BGX;AMX Move forward
#END End
RE Return to main program

NOTE: An applications program must be executing for #LIMSWI to
function.

10-5

H A R D W A R E & S O F T W A R E P R O T E C T I O N : 1 0

Notes:

10-6

1 0 : H A R D W A R E & S O F T W A R E P R O T E C T I O N

Overview

The following discussion may help you get your system to work.

Potential problems have been divided into groups as follows:

1. Installation

2. Communication

3. Stability and Compensation

4. Operation

The various symptoms along with the cause and the remedy are described
in the following tables.

Installation

Refer Back to Basic schematics and Chapter 2: Set Up to ensure correct
installation.

DRIVERCONTROLLERCOMPUTER

ENCODER MOTOR

11-1

Troubleshooting11

Communication

Stability

Operation

SYMPTOM

Controller rejects command.

Responded with a ?

Motor does not complete move.

During a periodic operation,

motor drifts slowly.

Same as above

CAUSE

Invalid command

Noise on limit switch stops

the motor.

Encoder noise

Programming error

REMEDY

Interrogate the TC or TC1.

To verify cause, check the stop code (SC).

If caused by limit switch, reduce noise.

Interrogate the position periodically. If the

controller states that the position is different

locations it implies encoder noise. Reduce

noise. Use differential encoder inputs.

Avoid resetting position error at end

of move with SH command.

SYMPTOM

Motor runs away when the loop is closed

Motor oscillates

CAUSE

Wrong feedback polarity

Too high gain or too little

damping

REMEDY

Invert the polarity of the loop by inverting

the motor leads (brush type) or the encoder

Decrease KI and KP. Increase KD

SYMPTOM

Using Tol-O-Motion, cannot

communicate with controller.

CAUSE

Baud rate is not

correctly configured.

Hardware handshaking is not enabled

(must be enabled to use Tol-O-Motion software)

Serial Cable is not correct

Incorrect port is specified

REMEDY

Check Baud rate switch positions

and registry settings for software setup

Set Hardware HSHK DIP switch

Use serial cable supplied by Tol-O-Matic

or check pinouts for cable (see appendix)

Change registry setting from com port

11-2

1 1 : T R O U B L E S H O O T I N G

	6: Sample Applications
	Overview
	Example Applications
	Wire Cutter
	X-Y Table Controller

	7: Two-Letter Command Syntax
	Introduction
	Command Syntax
	Coordinated Motion with More Than 1 Axis
	Program Syntax

	Controller Response to DATA
	Interrogating the Controller
	Interrogation Commands
	Additional Interrogation Methods

	Command Summary

	8: Programming Motion with Two-Letter Command Syntax
	Overview
	Independent Axis Positioning
	Command Summary - Independent Axis
	Operand Summary - Independent Axis
	Independent Positioning Examples

	Independent Jogging
	Command Summary - Jogging
	Operand Summary - Independent Axis
	Jog Examples

	Linear Interpolation Mode
	Specifying Linear Segments
	Specifying Vector Acceleration, Deceleration and Speed
	Additional Commands
	Trippoints
	Trippoint Example
	Specifying Vector Speed for Each Segment
	Vector Speed Example
	Changing Feedrate
	Command Summary - Linear Interpolation
	Operand Summary - Linear Interpolation
	Linear Interpolation Example

	Vector Mode: Linear and Circular Interpolation Motion
	Specifying Vector Segments
	Specifying Vector Acceleration, Deceleration and Speed
	Additional Commands
	Trippoints
	Changing Feedrate
	Compensating for Differences in Encoder Resolution
	Tangent Motion
	Tangent Motion Example
	Command Summary - Vector Mode Motion
	Operand Summary - Vector Mode Motion
	Vector Mode Example

	Electronic Gearing
	Command Summary - Electronic Gearing
	Operand Summary - Electronic Gearing
	Electronic Gearing Examples

	Electronic Cam
	Step 1: Selecting the Master Axis
	Step 2: Specify the Master Cycle and the Change in the Slave Axis (ES)
	Step 3: Specify the Master Interval and Starting Point
	Step 4: Specify the Slave Positions
	Step 5: Enable the ECAM
	Step 6: Engage the Slave Motion
	Step 7: Disengage the Slave Motion
	Command Summary - ECAM Mode
	Operand Summary - ECAM Mode
	Electronic CAM Example

	Contour Mode
	Specifying Contour Segments
	Additional Commands
	Command Summary - Contour Mode
	Operand Summary - Contour Mode
	Contour Example

	Teach (Record and Play-back)
	Record and Playback Example

	Dual Loop (Auxiliary Encoder)
	Using the CE Command
	Additional Commands for the Auxiliary Encoder
	Backlash Compensation
	Dual Loop Example

	Motion Smoothing
	Using the IT and VT Commands (S Curve Profiling) (Servo Motors Smoothing)
	Servo Motor
	Using the KS Command (Step Motor Smoothing)

	Homing
	Homing Examples

	High Speed Position Capture (The Latch Function)
	High Speed Position Example

	9: Application Programming with Two-letter Command Syntax
	Overview
	Using the SSC Editor to Enter Programs
	Edit Mode Commands

	Program Format
	Using Labels in Programs
	Label Example
	Special Labels
	Commenting Programs

	Executing Programs & Multitasking
	Debugging Programs
	Commands
	Operands
	Debugging Example

	Program Flow Commands
	Event Triggers & Trippoints
	SSC Event Triggers
	Event Trigger Examples

	Conditional Jumps
	Using the JP Command
	Using the JS Command
	Conditional Statements
	Jump Examples
	Command Format - JP and JS
	Logical Operators

	Subroutines
	Subroutine Example
	Stack Manipulation
	Automatic Subroutines for Monitoring Conditions
	More Subroutine Examples

	Mathematical Expressions
	Mathematical Expressions
	Bit-wise Operators

	Functions
	Using Functions

	Variables
	Valid Variable Names
	Invalid Variable Names
	Assigning Values to Variables
	Program Example

	Operands
	Examples
	Defining Arrays
	Assignment of Array Entries
	Using a Variable to Address Array Elements

	Arrays
	Defining Arrays
	Assignment of Array Entries
	Using a Variable to Address Array Elements
	Automatic Data Capture Into Arrays
	Command Summary - Automatic Data Caputre
	Operand Summary - Automatic Data Capture
	Deallocating Array Space

	Input of Data (Numeric and String)
	Cut-to-length Program Example
	Operator Data Entry Mode
	Keyword Examples
	Using Communication Interrupt
	Communication Interrupt Program Example
	Inputting String Variables
	Output of Data (Numeric and String)
	Sending Messages
	Displaying Variables and Arrays
	Formatting the Response of Interrogation Commands
	Convering to User Units

	Programmable Hardware I/O
	Digital Outputs
	Digital Inputs
	Input Interrupt Function
	Analog Inputs

	Application Programming Examples
	Wire Cutter
	X-Y Controller
	Speed Control By Joystick
	Position Control By Joystick
	Backlash Compensation by Sampled Dual-Loop

	10: Hardware & Software Protection
	Introduction
	Hardware Protection
	Output Protection Lines
	Input Protection Lines

	Software Protection
	Programmable Error Limit
	Programmable Position Limits
	Off-On-Error
	Automatic Error Routine
	Limit Switch Routine

	11: Troubleshooting
	Overview
	Installation
	Communication
	Stability
	Operation

