

B3W RODLESS BELT DRIVEN ACTUATOR

The B3W rodless style actuator is designed for carrying moderate to heavy loads at moderate to high speeds with large bending moment capacities. Based upon the BC3 pneumatic band cylinder, with our exclusive • ENDURANCE TECHNOLOGY© features, it utilizes a patented integral recirculating ball bearing guidance system that provides consistent and durable performance. Each

B3W is built-to-order in stroke lengths up to 292 inches. Nobody knows rodless like Tolomatic, and the B3W proves it.

- Low profile to fit your application
- High precision bearings feature smooth, low breakaway motion
- Highest load and bending moment capacities

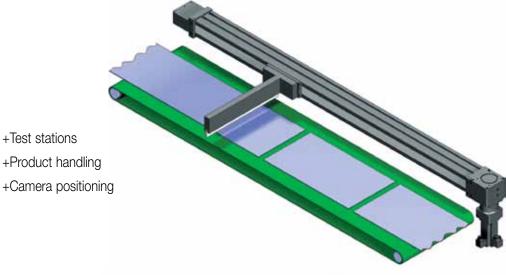
A COMPARISON OF BELT DRIVE ACTUATORS

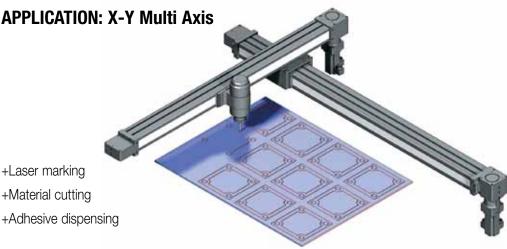
All Tolomatic belt drive actuators feature:

- High linear velocity High acceleration rate Long stroke lengths
- Excellent repeatability High duty cycles Low profile

Unique features include:

A Comparison of Tolomatic Belt Drive Actuators


APPLICATIONS


A rodless belt actuator integrates the advantages of a linear belt solution with a load support and guidance system. This combination allows you to install a preassembled and compact solution, often without the need of external guide rails or load support systems. Available in multiple frame sizes with options such as dual carriers and dual support systems, you can choose

the proper level of load and moment support required for your application. The result of this combination is a belt actuator that is:

- Easy to size, design and order
- Quick to install and maintain
- Simple to integrate and control
- Provides a lower installed cost

APPLICATION: High Speed Flying Cut Off

FREE downloads at www.tolomatic.com:

1-800-328-2174

• Sizing & Selection Software

• 3D Solid Models

CONTENTS

B3W Belt Drive Actuator 2
Belt Drive Comparison2
Applications3
Belt Construction4
Belt Drive Advantages4
B3W Performance5
B3W Features6
Specifications8
Bending Moments9
_oad Deflection10
Auxiliary Carrier11
Dimensions12-17
B3W1012
Dual 18013
B3W1514
Dual 18015
B3W2016
Dual 18017
Motor Orientation 18
Application Data Worksheet19
Selection Guidelines 20
Switches21
Ordering23
Other Tolomatic

Products......24

FEATURES

ADVANTAGES OF BELT SOLUTIONS

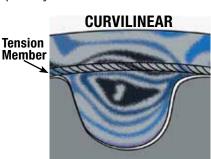
The use of synchronous belts, often referred to as timing belts, have become a standard in the automated motion industry as an alternate to screw drive mechanisms for producing linear motion.

This design for linear motion provides an excellent solution for applications that require:

- High-speed linear velocities
- High acceleration rates

- · Long length strokes
- High repeatability
- High duty cycles

A belt solution is ideal for linear positioning and gantry applications. Linear velocities can now reach up to 200 in/sec with acceleration rates at 1200 in/sec². Belting material is available in lengths that allow stroke lengths over 24 feet, two to three times longer than screw actuators.


BELT CONSTRUCTION

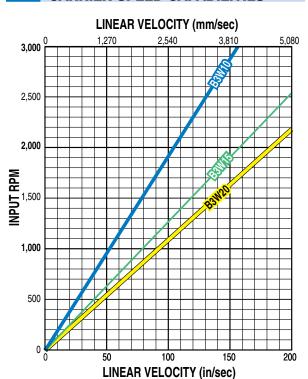
Tolomatic installs an HTD synchronous belt in the B3W product line that features a curvilinear tooth profile. This type of tooth profile distributes tooth load more evenly and provides greater tooth shear strength, allowing for higher thrust loading. The deep teeth of the HTD profile are more cogging-resistant at a given tension, preventing potentially damaging positioning errors.

Tolomatic's standard belt is a polyurethane material reinforced with steel tension members

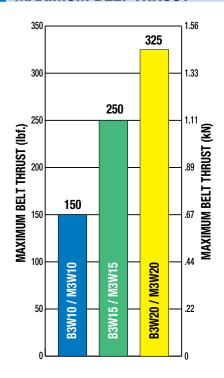
to produce high carrier thrusts without belt stretch. A Kevlar® reinforced belt featuring equal thrust capability is also available for

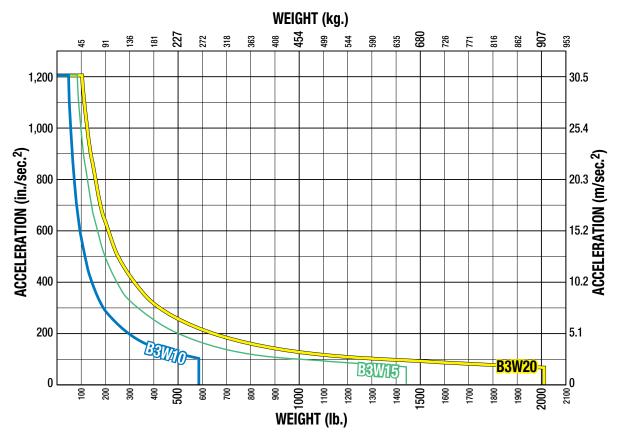
applications that may experience high shock loading.

Tolomatic's tooth belt profile distributes load evenly.


World class performance, five days built-to-order and legendary customer service ...

what you expect from the rodless leader . . . Tolomatic


PERFORMANCE


CARRIER SPEED CAPABILITIES

MAXIMUM BELT THRUST

MAXIMUM ACCELERATION AS A FUNCTION OF LOAD WEIGHT

Look for this endurance technology symbol indicating our durability design features

YOUR MOTOR HERE YOU CAN CHOOSE:

- Motor or gearbox supplied and installed by Tolomatic
- Specify the device to be installed and actuator ships with proper mounting hardware
- Specify and ship your device to Tolomatic for factory installation

YOU CAN CHOOSE: • Polyurethane steel-cord reinforced HTD style

MULTIPLE BELT TECHNOLOGIES

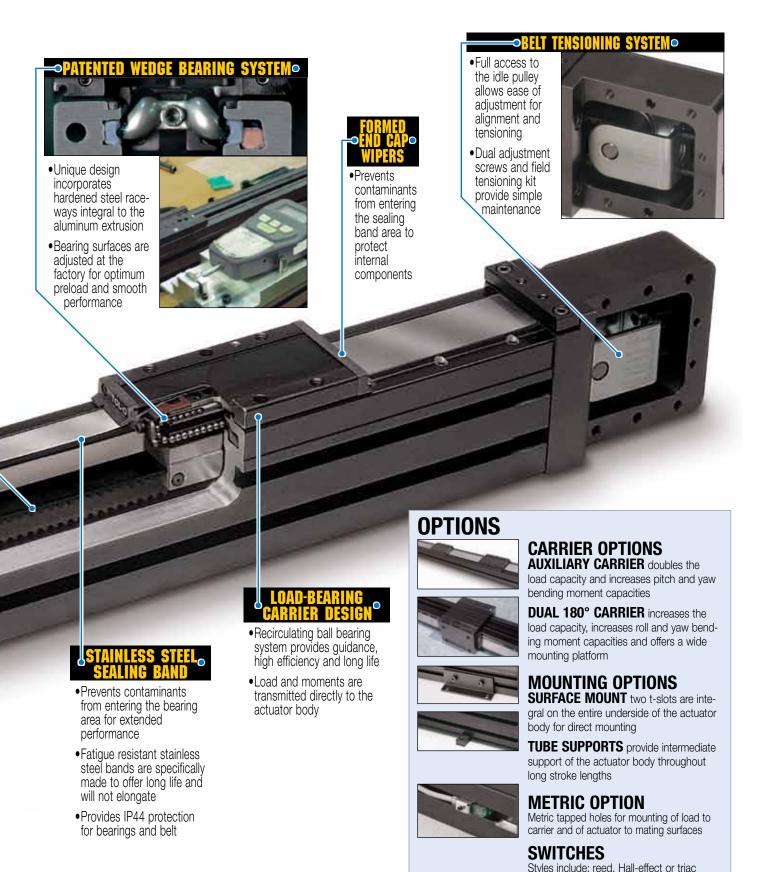
- belt (standard)
- Polyurethane Kevlar® reinforced HTD style belt

MOTOR ORIENTATION YOU CAN CHOOSE:

- Direct drive option directly couples the driving shafts and is a one-piece housing construction for optimum alignment and support of the motor
- Reduction drive option offers the ability to reduce the reflected inertia and lower the motor torque requirements

- •Black anodized extrusion design is optimized for rigidity and strength
- •External switch channels on both sides allow easy placement and adjustment of position indicating switches

OVERSIZED PULLEY BEARINGS


•Drive shaft assembly incorporates sealed ball bearings for complete support of the increased belt tension at high speeds

.0

•Bumpers protect the belt and clamp assembly from damage at end of stroke

Tolomatic **B3W** 6 1-800-328-2174 www.tolomatic.com

TOLOMATIC...MAXIMUM DURABILITY

SPECIFICATIONS

B3W SPECIFICATIONS

			STANDARD				METRIC	
		B3W10	B3W15	B3W20		M3W10	M3W15	M3W20
Max. Stroke	in	204	204	156	mm	5,182	5,182	3,962
Max. Velocity	in/sec	200	200	200	m/sec	5.08	5.08	5.08
Max. Acceleration	in/sec ²	1,200	1,200	1,200	m/sec ²	30.48	30.48	30.48
Max. Input Torque	lb-in	75.23	112.80	244.40	N-m	8.50	12.75	27.61
Breakaway Torque	lb-in	9.38	12.50	28.13	N-m	1.06	1.41	3.18
Dual 180 or Aux Carrier	lb-in	11.88	15.00	31.25	N-m	1.34	1.69	3.53
Dual 180 & Aux Carrier	lb-in	16.88	25.00	47.50	N-m	1.91	2.82	5.37
Pulley Pitch Dia.	in	1.003	1.504	1.754	mm	25.48	38.20	44.55
Stoke per Rev.	in/rev	3.151	4.725	5.510	mm/rev	80.04	120.02	139.95
Repeatability	in	+/- 0.002	+/- 0.002	+/- 0.002	mm	+/- 0.05	+/- 0.05	+/- 0.05
Straightness & Flatness ¹	in	0.00067 x L*	0.00067 x L*	0.00067 x L*	mm	0.017 x L*	0.017 x L*	0.017 x L*
Temp. Range ²	°F	40 - 130	40 - 130	40 - 130	°C	4 - 54	4 - 54	4 - 54
IP Rating ³	IP	44	44	44	IP	44	44	44
Weight (zero stroke)	lb	7.54	25.12	35.40	kg	3.42	11.39	16.06
Weight (per unit of stroke)	lb/in	0.389	0.395	0.716	kg/mm	0.0069	0.0071	0.0128
Weight of pulley	lb	0.015	0.054	0.1036	kg	0.0068	0.0244	0.0470
Weight of carrier	lb	0.85	1.56	2.14	kg	0.39	0.71	0.97
Inertia (zero stroke)	lb-in ²	0.2846	1.3917	2.6607	kg-cm ²	0.833	4.073	7.786
Inertia (per unit of stroke)	lb-in ² /in	0.0016	0.0017	0.0114	kg-cm ² /mm	0.00018	0.00020	0.00131
Inertia of pulley	lb-in ²	0.0093	0.0748	0.1441	kg-cm ²	0.027	0.219	0.422
Inertia of carrier	lb-in ²	0.1041	0.5089	0.9728	kg-cm ²	0.305	1.489	2.847

¹ The listed values relating to straightness/flatness are intended for reference purposes only, and not as an engineering standard of absolute tolerance for a given actuator. Appropriate installation is the single most important factor in reducing such deviation, so good engineering practices such as measurement, mapping, etc. must be employed in applications with stringent straightness/flatness requirements.

LARGE FRAME MOTORS AND SMALLER SIZE ACTUATORS: Cantilevered motors need to be supported if subjected to continuous rapid reversing duty and/or under dynamic conditions.

NOTE: Zero stroke inertia and weight are for an assembled actuator (including carrier, pulley and belt material) that has zero stroke length. To calculate system inertia use the formula below:

 $System\ Inertia = Inertia\ _{(zero\ stroke)} + \left[Inertia\ _{(per\ unit\ of\ stroke)}\ x\ number\ of\ units\right]$

(For weight calculation substitute inertia with weight in the above formula)

² Heat generated by the motor and drive should be taken into consideration as well as linear velocity and work cycle time. For applications that require operation outside of the recommended temperature range, contact the factory.

³ Protected against ingress of solid particles greater than .039 in (1mm) and splashing water.

^{*&}quot;L" is maximum distance between supports - See Support Recommendations graph pg 10.

SPECIFICATIONS

DYNAMIC BENDING MOMENTS AND LOADS

			STANDARD			METRIC		
STANDARD CARRIER			B3W10	B3W15	B3W20	M3W10	M3W15	M3W20
Fz 1	Mx Moment (Roll)	(lb-in : N-m)	250	859	1,662	28.2	97.1	187.8
Fy Mz	My Moment (Pitch)	(lb-in : N-m)	269	1,033	1,472	30.4	116.7	166.3
MX N	Mz Moment (Yaw)	(lb-in: N-m)	156	596	850	17.6	67.3	96.0
	Fy Load (Radial)	(lb : N)	341	840	1,159	1,517	3,737	5,155
	Fz Load (Lateral)	(lb : N)	591	1454	2008	2,629	6,468	8,932
AUXILIARY CARRIER: Increases rigidity, load-	carrying capacity and moments		B3W10	B3W15	B3W20	M3W10	M3W15	M3W20
Fz 1	Mx Moment (Roll)	*(lb-in : N-m)	500	1,718	3,324	56.5	194.1	375.6
Fy Mz	My Moment (Pitch)	*(lb-in : N-m)	2,825	11,734	16,265	319.2	1,325.8	1,837.7
Mx 7	Mz Moment (Yaw)	*(lb-in : N-m)	1,630	6,779	9,388	184.2	765.9	1,060.7
"0"	Fy Load (Radial)	(lb : N)	682	1,680	2,318	3,034	7,473	10,311
	Fz Load (Lateral)	(lb : N)	1,182	2,908	4,016	5,258	12,935	17,864
	Minimum Dimension 'D'	(in : mm)	4.88	8.07	8.10	124.0	205.2	205. 7
DUAL 180° CARRIER: Allows 90° rotation of lo	ad, adds load bearing surface		B3WD10	B3WD15	B3WD20	M3WD10	M3WD15	M3WD20
Fz 1	Mx Moment (Roll)	(lb-in: N-m)	657	2,468	4,527	74.2	278.8	511.5
Fy Mz	My Moment (Pitch)	(lb-in : N-m)	312	1,192	1,700	35.3	134.7	192.1
MX MX	Mz Moment (Yaw)	(lb-in: N-m)	538	2,066	2,944	60.8	233.4	332.6
	Fy Load (Radial)	(lb : N)	1,182	2,908	4,016	5,258	12,935	17,864
	Fz Load (Lateral)	(lb : N)	682	1,680	2,318	3,034	7,473	10,311
AUXILIARY DUAL 180° CARRIER: Substantially	increases moment and loads		B3WD10	B3WD15	B3WD20	M3WD10	M3WD15	M3WD20
Fz De Ma	Mx Moment (Roll)	*(lb-in : N-m)	1,314	4,936	9,054	148.5	557.7	1,023.0
My	My Moment (Pitch)	*(lb-in : N-m)	3,328	13,558	18,776	376.0	1,531.9	2,121.4
Mx	Mz Moment (Yaw)	*(lb-in : N-m)	5,768	23,468	32,530	651.7	2,651.5	3,675.4
"0"	Fy Load (Radial)	(lb : N)	2,364	5,816	8,032	10,516	25,871	35,728
	Fz Load (Lateral)	(lb : N)	1,364	3,360	4,636	6,067	14,946	20,622
	Minimum Dimension 'D'	(in : mm)	4.88	8.07	8.10	124.0	205.0	205.7

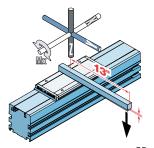
The Dual 180° carrier requires its own proprietary tube supports and foot mounts. See dimensional information. Breakaway torque will also increase when using the Auxiliary carrier or the Dual 180° carrier options. When ordering, determine working stroke and enter this value into the configuration string. Overall actuator length will automatically be calculated.

Deflection Considerations: In applications where substantial Mx or My moments come into play, deflection of the cylinder tube, carrier and supports must be considered. The deflection factors shown in the Load Deflection charts on the following page are based on cylinder mounted with tube supports at minimum recommended spacing. If more rigidity is desired, refer to the Auxiliary or Dual Carrier options.

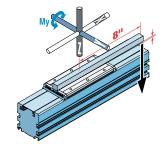
*Loads shown in table are at minimum "D" dimension, for ratings with longer "D" dimension see graphs on page 11.

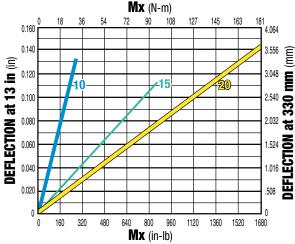
Life of the actuator will vary for each application depending on the combined loads, motion parameters and operating conditions. The load factor (L_F) ratios for each application must not exceed a value of 1 (see formula at right). Exceeding a load factor of 1 will diminish the actuator's rated life.

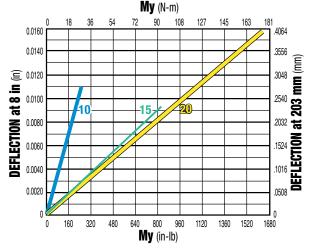
With combined loads, L_F must not exceed the value 1.


SPECIFICATIONS

LOAD DEFLECTION

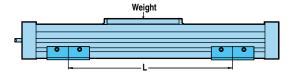

DEFLECTION ABOUT X AXIS


DEFLECTION ABOUT Y AXIS



DEFLECTION TESTING WAS DONE UNDER THESE CRITERIA:

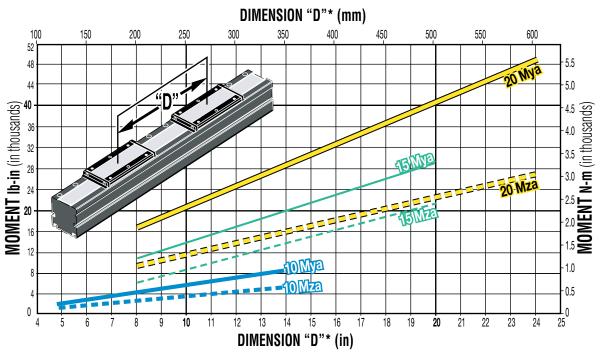
- Actuator was properly mounted with distance between supports within recommendations (see Support Recommendations below)
- 2.) Deflection was measured from center of carrier as shown (Mx = 13", My = 8")

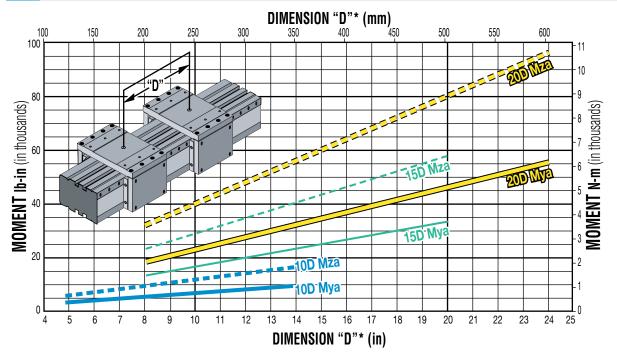



SUPPORT RECOMMENDATIONS

MAX DISTANCE BETWEEN SUPPORTS (mm) "L" 500 300 400 600 700 800 2,100 -9,000 1,800 -8,000 -7,000 1.500 LOAD WEIGHT (lbf) .0**4) Weight** -04)000,8--3,000 600 -2,000 300 1,000 0

MAX DISTANCE BETWEEN SUPPORTS (in) "L"


FRICTION FORCE


SPECIFICATIONS

AUXILIARY CARRIER: BENDING MOMENT AT 'D' DISTANCE

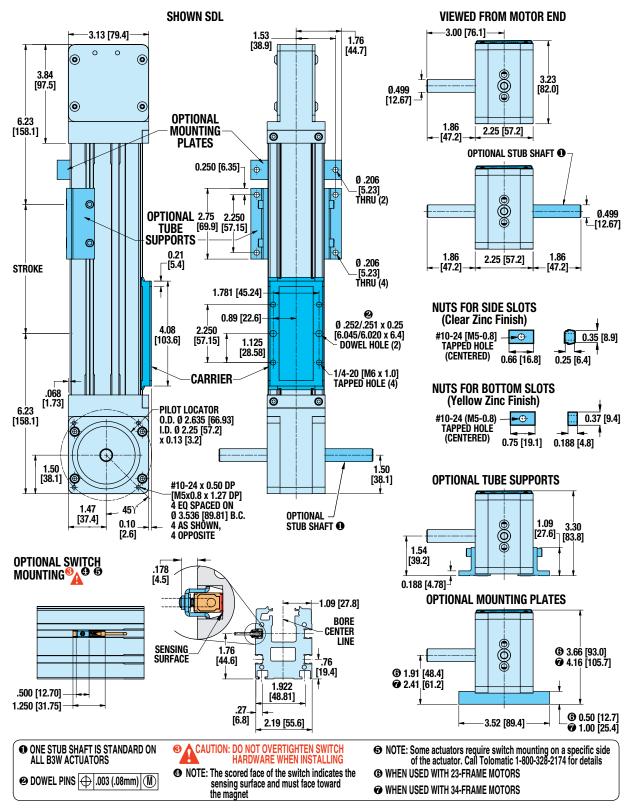
AUXILIARY DUAL 180° CARRIER: BENDING MOMENT AT 'D' DISTANCE

Rates shown on both graphs were calculated with these assumptions:

- 1.) Coupling between carriers is rigid.
- 2.) Load is equally distributed between carriers.
- 3.) Coupling device applies no misalignment loads to carriers.
- * Customer must specify Dimension "D" (Distance between carrier center lines) when ordering.

Life of the actuator will vary for each application depending on the combined loads, motion parameters and operating conditions. The load factor (L_E) ratios for each application must

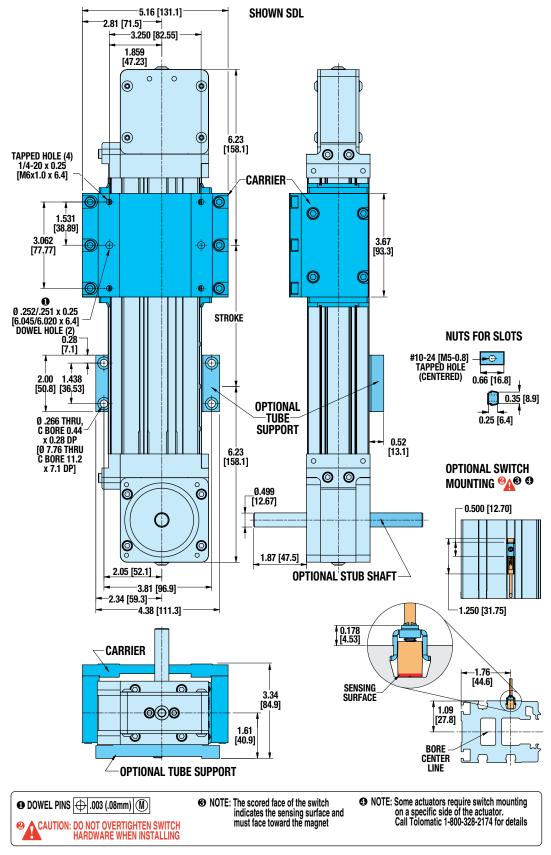
not exceed a value of 1 (see formula at right). Exceeding a load factor of 1 will diminish the actuator's rated life.


$$= \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1$$

With combined loads, L_E must not exceed the

DIMENSIONS

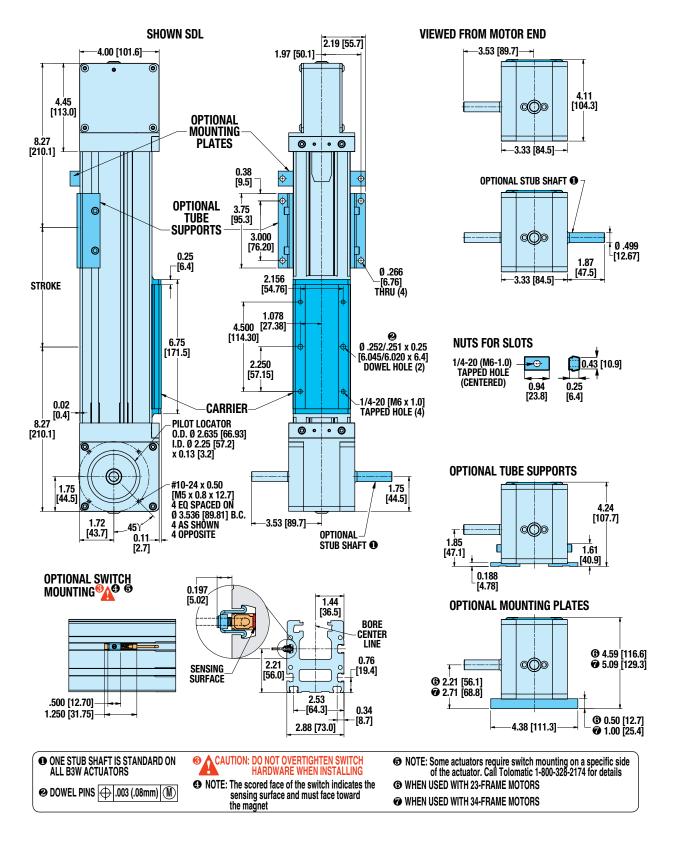
B3W10 ACTUATOR AND OPTIONS



Unless otherwise noted, all dimensions shown are in inches [Dimensions in brackets are in millimeters]

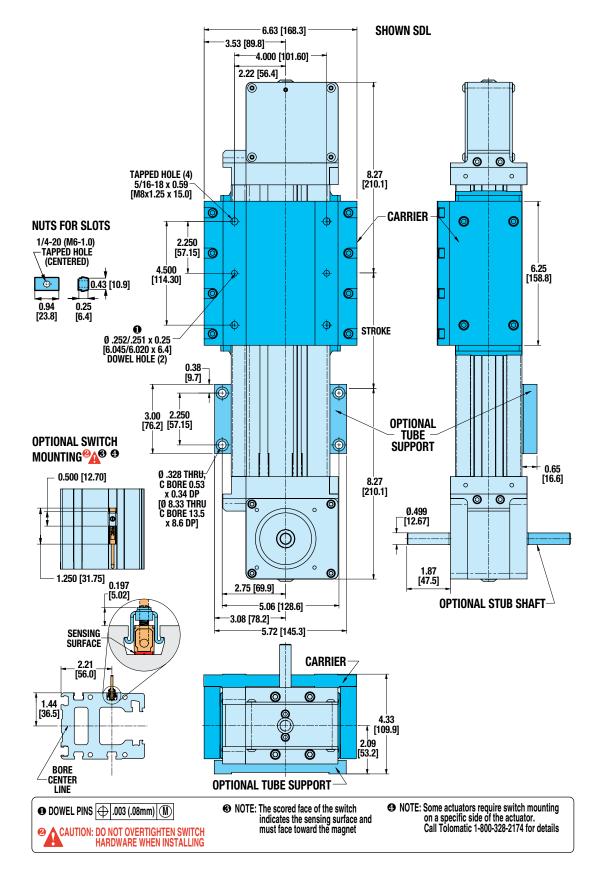
DIMENSIONS

B3WD10 DUAL 180° OPTION



DIMENSIONS

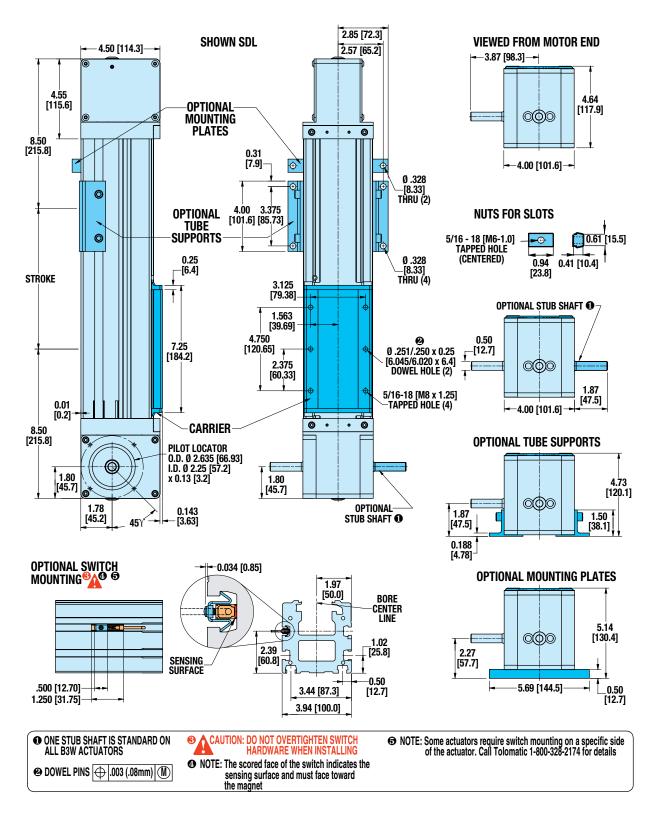
B3W15 ACTUATOR AND OPTIONS



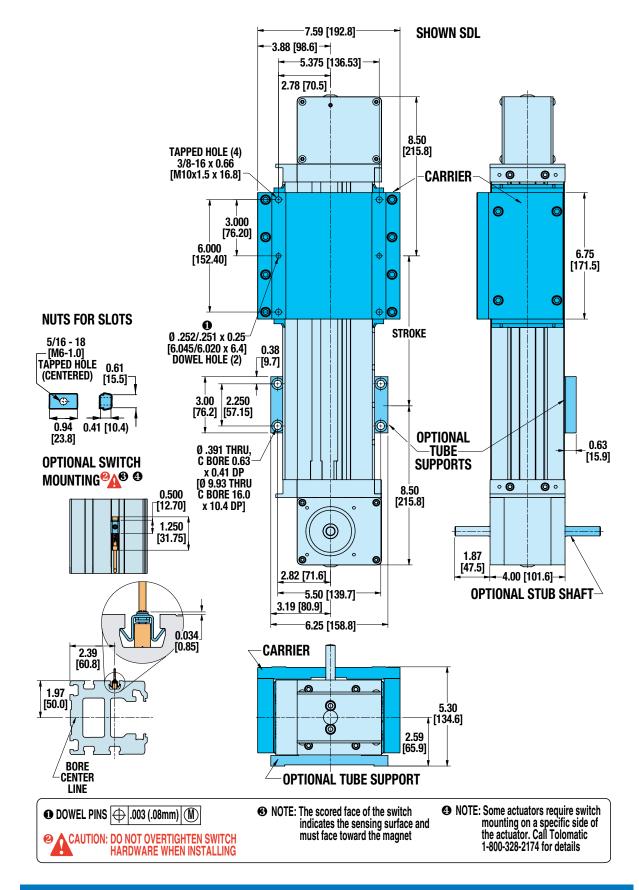
Unless otherwise noted, all dimensions shown are in inches [Dimensions in brackets are in millimeters]

DIMENSIONS

B3WD15 DUAL 180° OPTION

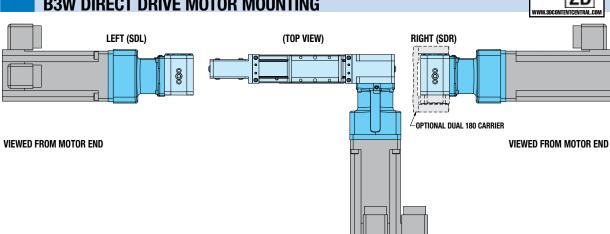


DIMENSIONS

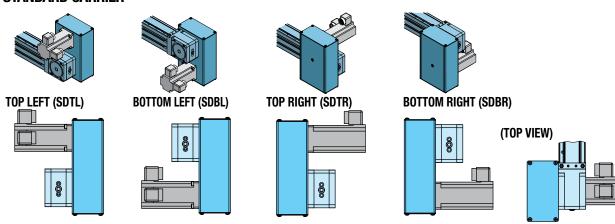


Unless otherwise noted, all dimensions shown are in inches [Dimensions in brackets are in millimeters]

DIMENSIONS


B3WD20 DUAL 180° OPTION

MOTOR ORIENTATION


B3W DIRECT DRIVE MOTOR MOUNTING

3D CAD AVAILABLE AT WWW.TOLOMATIC.COM

B3W(D)10 REDUCTION DRIVE MOTOR MOUNTING

STANDARD CARRIER

DUAL 180° CARRIER

APPLICATION DATA WORKSHEET Fill in known data. Not all information is required for all applications ORIENTATION ☐ Horizontal ☐ Side ☐ Angled ° ☐ Horizontal Down ☐ Vertical CENTER OF GRAVITY α_ SIDE VIEW β FRONT □ Load attached to carrier OR □ Load supported by other mechanism DISTANCE FROM CENTER OF CARRIER **BENDING MOMENTS** M_× TO LOAD CENTER APPLIED TO CARRIER M_V _____ **OF GRAVITY** \square N-m M_7 ☐ inch ☐ millimeters (U.S. Standard) (U.S. Standard) (Metric) STROKE LENGTH **PRECISION** inch (SK) Repeatability_ (U.S. Standard) inch ☐ millimeters NOTE: If load or force on carrier changes during cycle use the highest numbers for calculations OPERATING ENVIRONMENT Temperature, Contamination, etc. **FORCES APPLIED** LOAD **TO CARRIER** \square N ☐ Ib. ☐ lbf. (U.S. Standard) (U.S. Standard) (Metric) MOTION PROFILE Graph your most Speed (demanding cycle, **MOVE PROFILE** including accel/decel, Move Distance _ velocity and dwell times. You may also ☐ millimeters want to indicate load variations and I/O Dwell Time After Move _____ changes during the cycle. Label axes Max. Speed with proper scale and ☐ mm/sec ☐ in/sec units. MOVE TIME □ sec **NO. OF CYCLES** ☐ per minute ☐ per hour CONTACT INFORMATION Name, Phone, Email

Co. Name, Etc.

USE THE TOLOMATIC SIZING AND SELECTION SOFTWARE AVAILABLE ON-LINE AT www.tolomatic.com OR... CALL TOLOMATIC AT 1-800-328-2174. We will provide any assistance needed to determine the proper actuator for the job.

FAX 1-763-478-8080

EMAIL help@tolomatic.com

SELECTION GUIDELINES

The process of selecting a belt driven actuator for a given application can be complex. It is highly recommended that you contact Tolomatic or a Tolomatic distributor for assistance in selecting the best actuator for your application. The following overview of the selection guidelines are for educational purposes only.

CHOOSE ACTUATOR SIZE

Choose an actuator that has the thrust, speed and moment load capacity to move the load.

- A) For maximum thrust use the table below.
- **B)** Maximum speed of B3W 200 in/sec (5 m/sec).
- **C)** For B3W moment and load capacities see tables on page 9.

SIZE	MAX Thr	MUM UST
	lbf	N
10	150	667
15	250	1112
20	325	1445

2 COMPARE LOAD TO MAXIMUM LOAD CAPACITIES

Calculate the application load (combination of load mass and forces applied to the carrier) and application bending moments (sum of all moments Mx, My, and Mz applied to the carrier). Be sure to evaluate the magnitude of dynamic inertia moments. When a rigidly attached load mass is accelerated or decelerated, its inertia induces bending moments on the carrier. Careful attention to how the load is decelerated at the end of the stroke is required for improved actuator performance and application safety. If either load or any of the moments exceed figures indicated in the Moment and Load Capacity tables (page 9) for the actuator consider:

- 1) A larger actuator size
- 2) Auxiliary carrier
- 3) Dual 180° carrier

3 CALCULATE LOAD FACTOR (LF)

For loads with a center of gravity offset from the carrier account for both applied (static) and dynamic loads. The load factor (LF) must not exceed the value of 1.

$$L_F = \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1$$

If LF does exceed the value of 1, consider the three choices listed in step #2.

ESTABLISH YOUR MOTION PROFILE AND CALCULATE ACCELERATION RATE

Using the application stroke length and maximum carrier velocity (or time to complete the linear motion), establish the motion profile. Select either triangular (accel-decel) or trapezoidal (accelconstant speed-decel) profile. Now calculate the maximum acceleration and deceleration rates of the move. Acceleration/deceleration should not exceed 1200 in/sec² (30.48 m/sec²). Also, do not exceed safe rates of dynamic inertia moments determined in step #3.

5 SELECT MOTOR (GEARHEAD IF NECESSARY) AND DRIVE

To help select a motor and drive, use the sizing equations located in the Engineering Resources section of the Tolomatic Electric Products Catalog (#3600-4609) to calculate the application thrust and torque requirements. Refer to Motor sections to determine the motor and drive.

6 DETERMINE MOUNTING PLATE REQUIREMENTS

- Consult the Mounting Plate Requirements graph for the model selected (page 10)
- Cross reference the application load and maximum distance between supports
- Select the appropriate number of mounting plates

7 CONSIDER OPTIONS

- Choose metric or inch (U.S. standard) mounting. When ordering use SK and indicate stroke length in inches.
- Switches Reed, Hall-effect PNP or NPN and Triac

USE THE TOLOMATIC SIZING AND SELECTION SOFTWARE AVAILABLE ON-LINE AT www.tolomatic.com OR... CALL TOLOMATIC AT 1-800-328-2174. We will provide any assistance needed to determine the proper MX actuator for the job.

B3W_20 1-800-328-2174 STolomatic www.tolomatic.com

SWITCHES

There are 10 sensing choices for this actuator: DC reed, form A (open) or form C (open or closed); AC reed (Triac, open); Hall-effect, sourcing, PNP (open); Hall-effect, sinking, NPN (open); each with eiter flying leads or QD (quick disconnect). Commonly used to send analog signals to PLC (programmable logic controllers), TLL, CMOS circuit or other controller device. These switches are activated by the actuator's internal magnet.

Switches contain reverse polarity protection. QD cables are shielded; shield should be terminated at flying lead end.

If necessary to remove factory installed switches, be sure to reinstall on the same of side of actuator with scored face of switch toward internal magnet.

SPECIFICATIONS

	Order Code	Part Number	Lead	Switching Logic	Cable Shielding		e Minimum nd Radius Dynamic	Power LED	Signal LED	Operat- ing Voltage	**Power Rating (Watts)	Voltage Drop	Current Consumption	Temp. Range
	RT	3600-9082	5m	"A"	Unshielded	0.630" [16mm]	not recommended	None	Red	200 Vdc	10.0§	2.6 V		
REED DC	RM	3600-9083	QD*	Normally Open	Shielded [†]	0.630" [16mm]	1.260" [32mm]	• TOL-0	D-MATIC	max.	10.03	typical at 100 mA		
🗒	BT	3600-9084	5m	"C" Normally Open or	Unshielded	0.630" [16mm]	not recommended	None	None	120 Vdc	3.0 ^{§§}	NA	_	
	BM	3600-9085	QD*	Closed	Shielded [†]	0.630" [16mm]	1.260" [32mm]	INOHE	None	max.	3.0**	INA		
REED AC	CT	3600-9086	5m	Triac	Unshielded	0.630" [16mm]	not recommended	None	None	120 Vac	10.0	_	1 Amp at 86° F [30°C]	-40° to 158° F
끭	CM	3600-9087	QD*	Normally Open	Shielded [†]	0.630" [16mm]	1.260" [32mm]	None	None	max.	10.0		4 400 E [0000]	[-40° to 70° C]
	TT	3600-9088	5m	PNP (Sourcing)	Unshielded	0.630" [16mm]	not recommended	None	Red					
EFFECT DC	TM	3600-9089	QD*	Normally Open	Shielded [†]	0.630" [16mm]	1.260" [32mm]	• TOL-C)-matic	5 - 25	5.0	_	200mA	
HALL-EF	KT	3600-9090	5m	NPN (Sinking)	Unshielded	0.630" [16mm]	not recommended	None	Red	Vdc			@25Vdc	
_	KM	3600-9091	QD*	Normally Open	Shielded [†]	0.630" [16mm]	1.260" [32mm]	• TOL-O)-MATIC					

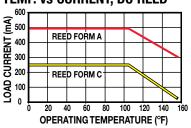
A CAUTION: DO NOT OVER TIGHTEN SWITCH HARDWARE WHEN INSTALLING!

** WARNING: Do not exceed power rating (Watt = Voltage X Amperage). Permanent damage to sensor will occur.

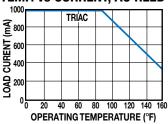
*QD = Quick Disconnect; Male coupler is located 6" [152mm] from sensor, Female coupler to flying lead (part #2503-1025) distance is 197" [5m] also see Cable Shielding specification above

REPLACEMENT OF QD SWITCHES MANUFACTURED BEFORE JULY 1, 1997: It will be necessary to replace or rewire the female end coupler.

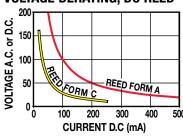
†Shielded from the female quick disconnect coupler to the flying leads. Shield should be terminated at flying lead end.


Reed Switch Life Expectancy: Up to 200,000,000 cycles (depending on load current, duty cycle and environmental conditions)

[§] Maximum current 500mA (not to exceed 10VA) Refer to Temperature vs. Current graph and Voltage Derating graph


^{§§} Maximum current 250mA (not to exceed 3VA) Refer to Temperature vs. Current graph and Voltage Derating graph

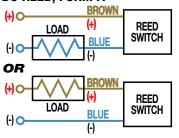
SWITCHES


TEMP. vs CURRENT, DC REED

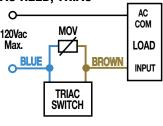
TEMP. vs CURRENT, AC REED

VOLTAGE DERATING, DC REED

Your motor here


CUSTOM MOTOR MOUNTS. FIVE DAYS.

 Select a high-performance Tolomatic electric actuator and we'll provide a motor-specific interface for YOUR motor. With our online database, you can select from over 60 motor manufacturers and hundreds of models.

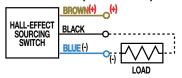

Visit **www.tolomatic.com/ymh** today to find your motor/actuator match!

WIRING DIAGRAMS

or

Select a complete system from tolomatic

Motors
 Drives
 Controllers
 Gearboxes


Tolomatic offers digital servo or stepper drives with motors matched to provide optimal performance with Tolomatic actuators.

CONFIGURE AN ACTUATOR AND A COMPLETE MOTION CONTROL SYSTEM TODAY USING TOLOMATIC'S EASY-TO-USE SIZING & SELECTION SOFTWARE

Availabe FREE at www.tolomatic.com

HALL-EFFECT, SOURCING, PNP

HALL-EFFECT, SINKING, NPN

THE NOTCHED FACE OF THE SWITCH INDICATES THE SENSING SURFACE AND MUST FACE TOWARD THE MAGNET.

THE NOTCHED GROOVE IN THE ACTUATOR INDICATES THE GROOVE TO INSTALL THE SWITCH. CONTACT TOLOMATIC IF SWITCHES ARE REQUIRED ON ANOTHER SIDE OF ACTUATOR.

B3W_22 1-800-328-2174 STolomatic www.tolomatic.com

ORDERING

BASE MODEL SPECIFICATIONS OPTIONS SPECIFICATIONS B3WD 20 BW\$40 SK56 SDTR DC18 T\$2 BM2 TN16

MODEL TYPE

B3W B3W Series Belt Drive B3WD B3W Series Belt Drive with Dual 180° Carrier

M3W* B3W Series Metric Belt Drive M3WD* B3W Series Metric Belt Drive with Dual 180° Carrier

* The M3W metric version provides metric tapped holes for mounting of the load to the carrier and of the actuator to mounting surfaces

TUBE BORE DIAMETER

10 1-inch (25 mm) bore
 15 1 ½-inch (40 mm) bore
 20 2-inch (50 mm) bore

BELT MATERIAL AND WIDTH

BWS18 18mm Polyurethane Steel belt (B3W10)

BWS30 30mm Polyurethane Steel belt

(B3W15) **BWS40** 40mm Polyurethane Steel belt (B3W20)

STROKE LENGTH

SK_____ Stroke, enter desired stroke length in decimal inches

MOTOR MOUNTING / REDUCTIONS

(must choose one)

SDL, SDLB* Direct Drive on left Drive on right

A motor size and code must be selected when specifying a 3:1 reduction. Reference the ordering pages* in sections F, G and H for the motor types and selections.

SDTL, SDTLB* 3:1 Reduction on top left SDTR, SDTRB* 3:1 Reduction on top right SDBL, SDBLB* 3:1 Reduction on bottom left SDBR, SDBRB* 3:1 Reduction on bottom right *For Dual Stub Shaft option

AUXILIARY CARRIER

DC___. Auxiliary Carrier, enter center-to-center spacing desired in decimal inches.

Center-to-Center spacing will add to overall dead length and will not subtract from the stroke length

GEARBOX, CONTROLS, MOTORS

Brushless Motors & Controls: **Servo** 3600-4609, see F Section

Stepper Motors & Controls: see

Literature #3600-4160

Gearbox See Literature #3600-4161

SUPPORTS AND MOUNTING PLATES

(both may be selected)

TS _ Tube Supports, enter quantity desired **MP**_ Mounting Plates, enter quantity desired

SWITCHES									
CODE	ТҮРЕ		QUICK- Disconnect	LEAD LENGTH	QUANTITY				
RM		Form A	QD						
RT	REED	FUIIII A	no		- -				
BM	뿐	Form C	QD		lesire				
BT		TOITILO	no		ntity o				
KM	ΣŢ	Sinking	QD	5 meters	quar				
KT	EFFE(Silikiliy	no	5 m	enter				
TM	HALL-EFFECT	Sourcing	QD		ode				
TT	土	Sourchig	no		After code enter quantity desired				
ı	1		1	l .	□				

T-NUTS

TRIAC

QD

no

CM

CT

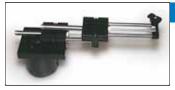
TN Additional T-Nuts, enter quantity

Not all codes listed are compatible with all options.

Use Tolomatic Sizing Software to determine available options and accessories based on your application requirements.

FIELD RETROFIT KITS										
ITEM	B3W10	B3W15	B3W20	M3W10	M3W15	M3W20				
Tube Supports	3410-9006	3415-9006	3420-9006	4410-9006	4415-9006	4420-9006				
Tube Supports (B3WD Dual 180° models)	3410-9170	3415-9170	3420-9170	4410-9170	4415-9170	4420-9170				
1/2" Mounting Plates (MRV 23-frame motors)	3410-9056	3415-9056	_	4410-9030	4415-9030					
1/2" Mounting Plates (MRV all frame motors)	_	_	3420-9056	-	_	4420-9030				
1" Mounting Plates (MRV all frame motors)	3410-9057	_	_	4410-9031	_					
1" Mounting Plates (MRV 34-frame motors)	_	3415-9057	_	_	4415-9031	_				

THE TOLOMATIC DIFFERENCE What you expect from the industry leader:


EXCELLENT CUSTOMER SERVICE & TECHNICAL SUPPORT

Our people make the difference! Expect prompt, courteous replies to all of your application and product questions.

INDUSTRY LEADING DELIVERIES

Standard catalog products are built to order and ready-to-ship in 5 days or less. Modified and custom products ship weeks ahead of the competition.

INNOVATIVE PRODUCTS

From standard catalog products... to modified products... to completely unique custom products, Tolomatic designs and builds the best solutions for your challenging applications.

SIZING & SELECTION SOFTWARE

Windows® compatible, downloadable from our website – FREE – the best tool of its kind on the market! Product selection has never been easier.

3D MODELS & 2D DRAWINGS AVAILABLE ON THE WEB

Easy to access CAD files are available in many popular formats.

ALSO CONSIDER THESE OTHER TOLOMATIC PRODUCTS:

PNEUMATIC PRODUCTS

RODLESS CYLINDERS: Band Cylinders, Cable Cylinders, MAGNETICALLY COUPLED CYLINDERS/SLIDES; GUIDED ROD CYLINDER SLIDES; ROTARY ACTUATORS
"FOLDOUT" BROCHURE #9900-9075 PRODUCTS BROCHURE #9900-4028 www.tolomatic.com/pneumatic

ELECTRIC PRODUCTS

ROD & GUIDED ROD STYLE ACTUATORS, HIGH THRUST ACTUATORS, SCREW & BELT DRIVE RODLESS ACTUATORS, MOTORS, AXIOM DRIVES/CONTROLLERS
"FOLDOUT" BROCHURE #9900-9074 PRODUCTS BROCHURE #9900-4016 www.tolomatic.com/electric

POWER TRANSMISSION PRODUCTS

GEARBOXES: Float-A-Shaft®, Slide-Rite®; DISC CONE CLUTCH; CALIPER DISC BRAKE
"FOLDOUT" BROCHURE #9900-9076 PRODUCTS BROCHURE #9900-4029 www.tolomatic.com/pt

3800 County Road 116 • Hamel, MN 55340 U.S.A. Toll-Free: 1-800-328-2174

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors that may appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Visit www.tolomatic.com for the most up-to-date technical information

