	Modbus Link Example 1

	
	To configure a Modbus Link, you must:

1.
 
Configure the hardware.
2.
 
Connect the Modbus communications cable.
3.
 
Configure the port.
4.
 
Write an application.
5.
 
Initialize the Animation Table Editor.
The diagrams below illustrate the use of Modbus function code 3 to read a slave’s output words. This example uses two Twido controllers.

Step 1: Configure the Hardware:


The hardware configuration is two Twido controllers. One will be configured as the Modbus Master and the other as the Modbus Slave. 

Note: In this example, each controller is configured to use EIA RS-485 on Port 1 and an optional EIA RS-485 Port 2. On a Modular controller, the optional Port 2 can be either a TWDNOZ485D or a TWDNOZ485T. On a Compact controller, the optional Port 2 can be either a TWDNAC485D or a TWDNAC485T.
To configure each controller, connect the TSXPCX1031 cable to Port 1 of the first controller.

Note: The TSXPCX1031 cable can only be connected to one controller at a time, on the EIA RS-485 Port 1 only.
Next, connect the cable to the COM 1 port of the PC. Be sure that the switch is in position 2. Download and monitor each application. Repeat procedure for second controller.

Step 2: Connect the Modbus Communications Cable:

[image: image1]
The wiring in this example demonstrates a simple point to point connection. The three signals A(+), B(-), and GND signals are wired according to the diagram.

If using Port 1 of the Twido controller, the DPT signal must be tied to ground This conditioning of DPT determines if TwidoSoft is connected. When tied to ground, the controller will use the port configuration set in the application to determine the type of communication.

Step 3: Configure the Port:

[image: image2]
In both the master and slave applications, the optional EIA RS-485 ports are configured. Be sure to change the controller communications to initialize the Modbus addresses or Port 2 to two different addresses. In this example, the master is set to an address of 1 and the slave to 2. The number of bits is set to 8, indicating that we will be using Modbus RTU mode. If this had been set to 7, then we would be using Modbus-ASCII mode. The only other default modified was to increase the response timeout to 1 second.

Note: Since Modbus RTU mode was selected, the "End of Frame" parameter was ignored.
Step 4: Write an Application:

[image: image3]
Using TwidoSoft, an application program is written for both the master and the slave. For the slave, we simple initialize some memory words to a set of known values. In the master, the exchange block is initialized to read 4 words from the slave at Modbus address 2 starting at location %MW0.

Note: Notice the use of the RX offset set in %MW1 of the Modbus master. The offset of three will add a byte (value = 0) at the third position in the reception area of the table. This aligns the words in the master so that they fall correctly on word boundaries. Without this offset, each word of data would be split between two words in the exchange block. This offset is used for convenience.
Before issuing the EXHC2 instruction, the application checks the Done bit associated with %MSG2. Finally, the error status of the %MSG2 is sensed and stored on the first output bit on the local base controller I/O. Additional error checking using %SW64 could also be added to make this more robust.

Step 5: Initialize the Animation Table Editor:

[image: image4]
After downloading and setting each controller to run, open an animation table on the master. Examine the response section of the table to check that the response code is 3 and that the correct number of bytes was read. Also in this example, note that the words read from the slave (beginning at %MW7) are aligned correctly with the word boundaries in the master.




	Modbus Link Example 2

	
	The diagram below illustrates the use of Modbus function code 16 to write output words to a slave. This example uses two Twido Controllers.

Step 1: Configure the Hardware:

[image: image5]
The hardware configuration is identical to the previous example.

Step 2: Connect the Modbus Communications Cable:

[image: image6]
The Modbus communications cabling is identical to the previous example.

Step 3: Configure the Port:

[image: image7]
The port configurations are identical to those in the previous example.

Step 4: Write an Application:

[image: image8]
Using TwidoSoft, an application program is created for both the master and the slave. For the slave, initialize a single memory word %MW18. This will allocate space on the slave for the memory addresses from %MW0 through %MW18. Without allocating the space, the exchange block would be trying to write to locations that did not exist on the slave. 

In the master, the exchange block is initialized to write 12 (0C hexadecimal) words to the slave at Modbus address 2 starting at location %MW16 (10 hexadecimal).

Note: Notice the use of the TX offset set in %MW1 of the Modbus master's application. The offset of seven will suppress the upper most byte in the sixth word (the value 00 hexadecimal in %MW5). This works to align the data values in the transmission table of the exchange block so that they fall correctly on word boundaries.
Before issuing the EXHC2 instruction, the application checks the Done bit associated with %MSG2. Finally, the error status of the %MSG2 is sensed and stored on the first output bit on the local base controller I/O. Additional error checking using %SW64 could also be added to make this more robust.

Step 5: Initialize the Animation Table Editor:

[image: image9]
After downloading and setting each controller to run, open an animation table. The two values in %MW16 and %MW17 are written to the slave. In the master, the animation table can be used to examine the reception table portion of the exchange data. This data displays the slave address, the response code, the first word written, and the number of words written starting at %MW8 in the example above.


	Standard Modbus Requests
	


	[image: image10]
	

	Introduction

	
	You can use these requests to exchange data between devices to access bit and word information. The same table format is used for both RTU and ASCII modes.

Format
Reference
Bit
%Mi, 0x or 1x registers
Word
%MWi, 3x or 4x registers



	Modbus Master: Read N Output and Input Bits

	
	This table represents Request 01 and Request 02.

 
Table

Index
Most Significant Byte
Least Significant Byte
Control
0
01 (Tx/Rx)
06 (Length Tx)
1
00 (Rx Offset)
00 (Tx Offset)
Transmission table
2
Slave@(1..247)
01 (Request code)
3
Number of the first bit to read
4
N = Number of bits to read
Reception table (after response)
5
Slave@(1..247)
01 (Response code)
6
Number of data bytes transmitted (1 byte by bit)
7
First byte read (value = 00 or 01)
Second byte read (if N>1)
8
Third byte read
 
...
 
 
(N/2)+6
Byte N read (if N>1)
 



	Modbus Master: Read N Output and Input Words

	
	This table represents Request 03 and Request 04.

 
Table

Index
Most Significant Byte
Least Significant Byte
Control
0
01 (Tx/Rx)
06 (Length Tx)
1
03 (Rx Offset)
00 (Tx Offset)
Transmission table
2
Slave@(1..247)
03 (Request code)
3
Number of the first word to read
4
N = Number of words to read
Reception table (after response)
5
Slave@(1..247)
03 (Response code)
6
00 (byte added by Rx Offset action)
2*N (number of bytes read)
7
First word read
8
Second word read (if N>1)
...
 
N+6
word N read (if N>2)
Note: The Rx Offset=3 will add a byte (value=0) at the third position in the reception table. Allow a good positioning of the number of bytes read and of the read words’ values in this table.



	Modbus Master: Write 1 Output Bit

	
	This table represents Request 05.

 
Table

Index
Most Significant Byte
Least Significant Byte
Control
0
01 (Tx/Rx)
06 (Length Tx)
1
00 (Rx Offset)
00 (Tx Offset)
Transmission table
2
Slave@(1..247)
05 (Request code)
3
Number of the bit to write
4
Bit value to write
Reception table (after response)
5
Slave@(1..247)
05 (Response code)
6
Number of the bit written
7
Value written
Note: 
[image: image11]
 
This request does not need the use of offset.
[image: image12]
 
The response frame is the same as the request frame here (in a normal case).
[image: image13]
 
For a bit to write 1, the associated word in the transmission table must contain the value FF00H. 0 for a bit value is 0.



	Modbus Master: Write 1 Output Word

	
	This table represents Request 06.

 
Table

Index
Most Significant Byte
Least Significant Byte
Control
0
01 (Tx/Rx)
06 (Length Tx)
1
00 (Rx Offset)
00 (Tx Offset)
Transmission table
2
Slave@(1..247)
06 (Request code)
3
Number of the word to write
4
Word value to write
Reception table (after response)
5
Slave@(1..247)
06 (Response code)
6
Number of the word written
7
Value written
Note: 
[image: image14]
 
This request does not need the use of offset.
[image: image15]
 
The response frame is the same as the request frame here (in a normal case).



	Modbus Master: Write N Output Bits

	
	This table represents Request 15.

 
Table

Index
Most Significant Byte
Least Significant Byte
Control
0
01 (Tx/Rx)
8 + number of bytes (Tx)
1
00 (Rx Offset)
07 (Tx Offset)
Transmission table
2
Slave@(1..247)
15 (Request code)
3
Number of the first bit to write
4
N1 = Number of bits to write
5
00 (byte not sent, offset effect)
N2 = Number of data bytes to write
6
Value of the first byte
Value of the second byte
7
Value of the third byte
...
 
 
6+(N2/2)
Value of the N2th byte
Reception table (after response)
 
Slave@(1..247)
15 (Response code)
 
Number of the first bit written
 
Number of bits written (= N1)
Note: 
[image: image16]
 
The Tx Offset=7 will suppress the 7th byte in the sent frame. Allow a good correspondence of words’ values in the transmission table.



	Modbus Master: Write N Output Words

	
	This table represents Request 16.

 
Table

Index
Most Significant Byte
Least Significant Byte
Control
0
01 (Tx/Rx)
8 + (2*N) (Length Tx)
1
00 (Rx Offset)
07 (Tx Offset)
Transmission table
2
Slave@(1..247)
16 (Request code)
3
Number of the first word to write
4
N = Number of words to write
5
00 (byte not sent, offset effect)
2*N=NR of bytes to write
6
First word value to write
7
Second value to write
...
 
N+5
N value to write
Reception table (after response)
N+6
Slave@(1..247)
16 (Response code)
N+7
Number of the first word written
N+8
Number of word written (= N)
Note: The Tx Offset=7 will suppress the 5th MMSB byte in the sent frame. Allow a good correspondence of words’ values in the transmission table.



